Устройство для передачи данных в компьютерных сетях

Устройство для передачи данных в компьютерных сетях

В нашей предыдущей статье мы рассматривали историю развития компьютерных сетей. Рассмотрели все важные этапы становления сети Интернет и общие принципы ее работы.

Сегодняшняя наша тема будет называться: технологии передачи данных в сетях. Естественно, прежде всего, — компьютерных. В рамках данной статьи мы также рассмотрим основные средства передачи данных (понятия физических и логических интерфейсов), разберем основные технологии кодирования сигнала при его передаче, характеристики линий связи, а также — механизмы защиты от потерь.

Итак! Для чего существует сеть? Правильно, — для передачи по ней данных (информации). А как передается (распространяется) эта самая информация? Правильно, — через определенную среду передачи (кабельную инфраструктуру или — в диапазоне беспроводной связи).

Технологии передачи данных в своей работе используют (в зависимости от конкретной их реализации) различные физические интерфейсы.

Примечание: интерфейс это — физическая (или логическая) граница при взаимодействии нескольких независимых объектов — своеобразная прослойка между ними.

Интерфейсы делятся на две категории:

  1. физические интерфейсы
  2. интерфейсы логические

Физический интерфейс это — конечный порт подключения (разъем с группой электрических контактов). Например — интерфейс сетевой карты компьютера. А пара портов, соединенная с помощью разъемов и кабеля называется линией (каналом) передачи данных.

Логический интерфейс — это набор правил (протокол), который определяет саму логику обмена данными между связанными линией (сетью) устройствами.

Организация передачи данных в компьютерной сети происходит в тесном взаимодействии этих двух интерфейсов: физический компонент (сетевая карта) и логический (ее драйвер).

Обязательным условием для успешной реализации любой из технологий передачи данных является присутствие в потоке данных дополнительного компонента — протокола передачи.

Протокол передачи на логическом уровне представляет собой набор правил, которые определяют обмен данными между различными приложениями или устройствами. Эти правила задают единый способ передачи сообщений и обработки ошибок передачи. На физическом уровне протокол это — набор служебных данных, прикрепляющихся к основным пакетам (кадрам) информации, без которых просто невозможно эффективное взаимодействие в сети.

Протокол должен абстрагироваться (игнорировать) конкретную среду передачи, его задача — обеспечивать надежную связь между узлами в коммутационном облаке.

Давайте рассмотрим сам процесс организации передачи данных более подробно!

Сначала происходит вот что: приложение (программа) обращается к ОС за разрешением для сетевого взаимодействия с другим устройством (принтером, удаленным компьютером, камерой наблюдения и т.д.) Операционная система дает команду драйверу сетевой карты, который загружает в буфер карты первую порцию данных и инициирует работу интерфейса на передачу

На другом конце линии (сети) удаленное устройство принимает в буфер своей сетевой карты поступающие данные. После окончания передачи протокол проверяет нет ли в передаваемых частях (пакетах) данных ошибок (если надо запрашивает их повторную передачу) и загружает принятые данные из буфера карты в заранее зарезервированное пространство оперативной памяти. Оттуда уже конечное приложение (программа) извлекает информацию и работает с ней.

Вот — схемка, для наглядности (кликабельно):

На основании всего сказано выше, можно сделать такой вывод: технологии построения сети сводятся к тому, чтобы связать между собой удаленные устройства электрически и информационно! Т.е. — создать физическую среду передачи (кабель, беспроводная связь) и обеспечить общий протокол передачи данных по сети.

Двигаемся дальше! Современные технологи и методы передачи данных, в большинстве случаев, основаны на клиент-серверном взаимодействии. Давайте с Вами более подробно рассмотрим эти понятия.

Клиент это — модуль (программа, служба, отдельный компьютер), служащий для формирования и передачи сообщений (запросов) к ресурсам удаленного устройства (серверу), с последующим приемом результатов от него и передачей их соответствующим приложениям на клиенте.

Сервер это — модуль (программа, служба. ), который постоянно ожидает прихода из сети запросов от клиентов и обслуживающий (с участием локальной ОС) эти запросы.

Один сервер может обслуживать сразу множество клиентов. Например — веб-сервер «Apache» (Апач), который обеспечивает множественные подключения за день к нашему сайту «sebeadmin.ru» по протоколу «http». Вот — еще пример: база данных, с которой работают клиенты. На них установлены клиентские модули программ, которые подключаются к базе и поддерживают только графический интерфейс работы с ней. Все вычисления и обработка, при этом, происходят на сервере и с использованием его ресурсов.

Познакомимся еще с одним определением! Клиент-серверная составляющая, которая предоставляет доступ к какому-то ресурсу компьютера через сеть называется сетевой службой. Причем, каждая служба связана с определенным типом сетевых ресурсов.

Например: служба печати позволяет нам распечатывать документы на сетевом принтере, а файловая служба — получать доступ к данным, находящимся на удаленных компьютерах. Для серфинга по Интернету есть своя веб-служба, которая состоит из серверной части (веб-сервера) и клиентской (веб-браузера) пользователя (IE, Opera, Firefox и т.д.)

В свете всего сказанного выше, технологии передачи данных должны опираться не просто на операционные системы, а на сетевые ОС, которые предоставляют пользователю доступ к информационным и аппаратным ресурсам других компьютеров. Причем эти операционные системы, согласно изложенным выше определениям, также делятся на два больших класса: серверные и клиентские ОС.

Читайте также:  Эов 4 2 ухл4 схема подключения

Клиентские системы обращаются, в основном, с запросами к серверным компонентам других компьютеров а серверные компоненты серверной ОС предоставляют эти услуги. Конечно, на данный момент, практически любая современная ОС способна выполнять как роль клиента, так и сервера. Серверные системы просто изначально созданы из расчета обслуживания ими максимального количества обращений и обладают лучшей отказоустойчивостью (надежностью).

Вот, к примеру, какая "игрушка" стоит у нас в серверной:

Но о ней — в другой раз 🙂

Давайте теперь с Вами поговорим вот о чем: современные (цифровые) технологии передачи сигнала связаны с его преобразованием (кодированием). Зачем нам это нужно? На то есть несколько причин:

  1. Предотвращение ошибок передачи данных (за счет уверенного распознавания сигнала принимающей стороной)
  2. Данные передаются быстрее (за счет более высокой плотности полезной информации в потоке)

Как видите, это — уже две весьма веские причины для того, чтобы уделить методам кодирования должное внимание 🙂

На фото ниже представлено два сигнала: аналоговый (красная линия) и цифровой (черные "ступеньки")

В данном случае аналоговая последовательность была оцифрована (дискретизирована) с определенной частотой. Чем выше будет частота дискритизации, тем меньший шаг будут иметь наши "ступеньки" и тем более похож будет оцифрованный сигнал на исходный (красный).

Похожие процессы происходят и при дискретизации (оцифровке) нашего голоса, снимаемого со входа микрофона звуковой картой компьютера.

В вычислительной технике используется двоичный код. Внутри системного блока компьютера это эквивалентно двум состояниям: наличию и отсутствию электрического напряжения (логический «ноль» или «единица»). Здесь — все просто: есть ток — "единица", нету — "ноль".

Современные технологии передачи данных позволяют производить кодирование сигнала и другими (более эффективными) способами. Но прежде, — еще одна небольшая классификация. По способу реализации процедура делится на:

  1. Физическое кодирование сигнала
  2. и — логическое (на более высоком уровне — поверх физического)

Давайте сначала обзорно рассмотрим первый пункт. Есть, к примеру, потенциальный способ кодирования, при котором единице соответствует один уровень напряжения (один потенциал), а нулю — другой. А при импульсном способе, для представления цифр используются импульсы разной полярности.

Для технологии кодирования определенная проблема при передаче данных состоит в том, что внешние (по отношению к самому компьютеру) линии передачи данных могут быть растянуты на большие расстояния и подвержены воздействию различных помех и наводок. Это приводит к искажению эталонных прямоугольных импульсов передачи сигнала и нужны новые (надежные) алгоритмы его кодирования и передачи.

В вычислительных сетях применяется как потенциальное, так и импульсное кодирование. Также применяется и такой способ передачи данных, как модуляция.

При модуляции дискретные данные передаются с помощью синусоидального сигнала той частоты, которую хорошо передает имеющаяся в распоряжении линия связи.

Первые два варианта преобразования применяются для линий высокого качества, а модуляция используется в каналах с сильными искажениями сигнала. Модуляция, к примеру, используется в глобальных сетях при передаче трафика через аналоговые телефонные каналы связи, которые были разработаны специально для передачи голоса (аналоговой составляющей) и поэтому плохо подходят для передачи цифровых импульсов.

На сам способ передачи оказывает влияние и такая вещь, как количество проводников (жил) в линиях связи. Для снижения их стоимости количество проводов, зачастую, снижается. При такой технологии передача данных осуществляется последовательно, а не параллельно (как это принято для линий связи внутри компьютера).

К способам кодирования на физическом уровне относятся такие алгоритмы, как NRZ (Non Return Zero), Манчестерский код (Manchester), MLT-3 (Multi Level Transmission) и ряд других. Не вижу особого смысла останавливаться на них подробно, если будет интересно — Вы всегда сможете почитать о них в Интернете. Короче, я — отмазался! 🙂

Давайте пару слов скажем и о логическом кодировании. Как можно понять из названия, оно осуществляется по верху физического (накладываясь на него) и служит для обеспечения дополнительной надежности при передаче данных. Каким же образом?

Например: если характер передаваемого сигнала долгое время не изменяется (при передаче длинных последовательностей логических нулей или единиц) приемник может ошибиться при считывании очередного бита информации. Он просто не сможет разложить общий поток данных на отдельные составляющие и, как следствие, — правильно собрать в своем буфере из них исходную структуру.

Логическое кодирование (которому подвергается исходная последовательность данных) внедряет в длинные последовательности бит свои биты с противоположным значением, или — вообще заменяет их другими последовательностями. Кроме того, оно позволяет улучшить спектральные характеристики сигнала, в целом — упростить его расшифровку, а кроме того — передавать в общем потоке дополнительные служебные сигналы управления.

В основном, для логического преобразования применяются три технологии:

  1. вставка бит (bit stuffing)
  2. избыточное кодирование
  3. скремблирование

Также — не останавливаюсь отдельно (чтобы не занудить) 🙂 основную идею Вы, надеюсь, уловили!

Коротко отчитаюсь следующим скриншотом:

На нем Вы можете видеть, как выглядит один и тот же сигнал, при наложении на него различных алгоритмов:

Технологии передачи данных имеют еще ряд проблем, с которыми приходится бороться. И одна из них — проблема взаимной синхронизации передатчика одного компьютера и приемника другого. Согласитесь, что сложно будет разобраться в потоке данных, если два устройства начнут генерировать его одновременно "навстречу" друг другу. Начнется бардак! 🙂

Читайте также:  Селадоновый цвет в интерьере

Внутри корпуса компьютера эта проблема решается просто, так как все устройства: оперативная память, видеокарта, центральный процессор и т.д. синхронизируются от общего тактового генератора, расположенного на материнской плате.

Проблема же синхронизации удаленных компьютеров может решаться разными способами: путем обмена специальными тактовыми синхроимпульсами или же — передачей служебных данных, не имеющих отношения к основному потоку информации. Один из стандартных приемов, служащий для повышения надежности передачи это — подсчет контрольной суммы каждого байта (блока байтов) и передача этого значения принимающей стороне.

Примечание: контрольная сумма это некоторое значение, рассчитанное путем "наложения" на данные определённого алгоритма и используемое для проверки их целостности при передаче. Контрольные суммы могут использоваться для быстрого сравнения двух наборов данных на их идентичность. Отличающиеся данные будут иметь разные контрольные суммы..

Еще одна технология подтверждения целостности данных это — обмен между взаимодействующими устройствами служебными сигналами-квитанциями, подтверждающими правильность приема. Зачастую эта функция по умолчанию включается в сам протокол сетевого взаимодействия.

Технологии передачи данных подразумевают передачу информации от одного компьютера к другому — в обеих направлениях. Даже в том случае, когда нам кажется, что мы только принимаем данные (например — скачиваем музыку), то на самом деле — обмен идет в двух направлениях. Просто есть основной поток данных (который интересует нас — музыка) и вспомогательный (служебный), идущий в обратном направлении, образуемый квитанциями об успешной (или не успешной) передаче.

В зависимости от того, могут ли они передавать данные в обоих направлениях или нет, физические каналы делятся на несколько видов:

  • Дуплексный канал — обеспечивает одновременную передачу информации в обоих направлениях Дуплекс может состоять из двух независимых физических сред (один проводник на прием, второй — на передачу). Возможен и вариант, при котором одна среда используется для обеспечения дуплексного режима работы. В этом случае на клиентах применяются дополнительные алгоритмы выделения каждого потока данных из общего массива информации.
  • Полудуплексный канал — также обеспечивает передачу в обоих направлениях, но не одновременно, а — по очереди. Т.е. в течение определенного времени данные передаются в одном направлении, а затем — в обратном.
  • Симплексный канал — позволяет передавать информацию только в одном направлении. Дуплексный может состоять из двух симплексных каналов.

Ой, что-то много букв получилось 🙂 Думаю, на сегодня — достаточно, будем продвигаться постепенно. В следующих статьях обязательно продолжим наше знакомство с сетевыми информационными технологиями, а пока что — до свидания, и — до следующих статей!

В завершение, посмотрите тематическое видео:

При обмене данными между узлами сети используются три метода передачи данных:

  • симплексная (однонаправленная) передача (телевидение, радио);
  • полудуплексная (прием и передача информации осуществляются поочередно);
  • дуплексная (двунаправленная), каждая станция одновременно передает и принимает данные.

Для передачи данных в сетях наиболее часто применяется последовательная передача. Широко используются следующие методы последовательной передачи: асинхронная и синхронная.

Рис. 1. Асинхронная и синхронная передача данных

При асинхронной передаче каждый символ передается отдельной посылкой (рис. 1). Стартовые биты предупреждают приемник о начале передачи. Затем передается символ. Для определения достоверности передачи используется бит четности (бит четности = 1, если количество единиц в символе нечетно, и 0 в противном случае. Последний бит «стопбит» сигнализирует об окончании передачи.

Преимущества: несложная отработанная система; недорогое (по сравнению с синхронным) интерфейсное оборудование.

Недостатки асинхронной передачи: третья часть пропускной способности теряется на передачу служебных битов (старт/стоповых и бита четности); невысокая скорость передачи по сравнению с синхронной; при множественной ошибке с помощью бита четности невозможно определить достоверность полученной информации.

Асинхронная передача используется в системах, где обмен данными происходит время от времени и не требуется высокая скорость передачи данных. Некоторые системы используют бит четности как символьный бит, а контроль информации выполняется на уровне протоколов обмена данными.

При использовании синхронного метода данные передаются блоками. Для синхронизации работы приемника и передатчика в начале блока передаются биты синхронизации. Затем передаются данные, код обнаружения ошибки и символ окончания передачи. При синхронной передаче данные могут передаваться и как символы, и как поток битов. В качестве кода обнаружения ошибки обычно используется циклический избыточный код обнаружения ошибок (CRC). Он вычисляется по содержимому поля данных и позволяет однозначно определить достоверность приятой информации.

Преимущества синхронного метода передачи информации: высокая эффективность передачи данных; высокие скорости передачи данных; надежный встроенный механизм обнаружения ошибок.

Недостатки: интерфейсное оборудование более сложное и соответственно более дорогое.

Последовательный и параллельный способы передачи информации

Информация в компьютерах представлена в форме последовательностей двоичных чисел. Обмен данными как внутри вычислительного устройства между его узлами, так и между автономными машинами, может производиться двумя способами:

  • последовательная передача: имеется только одна линия, состояние на ее передающей стороне отправляется только тогда, когда предыдущее обработано принимающей, т.е. данные передаются побитно;
  • параллельная передача; при таком способе организуются сразу несколько линий, состояние на концах которых меняется одновременно; таким образом, можно передать за один раз столько бит, сколько имеется линий между передатчиком и приемником.
Читайте также:  Культиватор аккумуляторный greenworks g40tl

Рисунок 1. Последовательная и параллельная передача данных. Автор24 — интернет-биржа студенческих работ

При параллельной передаче технологически трудно избежать взаимовлияния токов, протекающих по близко расположенным проводникам. Поэтому такой способ используется там, где расстояния невелики: между узлами компьютера (т.н. шина данных), между компьютером и монитором (VGA-порт), между компьютером и принтером (параллельный порт).

Попробуй обратиться за помощью к преподавателям

Последовательная передача, хотя и уступает параллельной по скорости, обеспечивает более эффективную обработку ошибок и менее затратна в случае отправки данных на большие расстояния: двужильный кабель дешевле и надежнее многожильного.

Американские фермеры в начале XX в. использовали огораживавшую пастбища колючую проволоку и заземление для организации телефонной связи. Таким образом, для передачи информации они обходились всего одним проводом.

Для передачи информации в компьютерных сетях в подавляющем большинстве случаев используется последовательная передача данных. Хотя с развитием технологий стало возможным одновременно передавать несколько потоков (разнесение по частотам в wifi, передача по оптоволокну лучей с разным углом наклона), такие способы нельзя назвать параллельной передачей, т.к. данные в каждой такой линии обрабатываются независимо друг от друга.

Пакетный принцип организации данных и маршрутизация

Задай вопрос специалистам и получи
ответ уже через 15 минут!

При последовательной передаче данные в сетях принято передавать не непрерывным потоком, а пакетами (порциями, сериями). Такой подход обладает следующими преимуществами:

  1. по одной и той же линии можно передавать данные для нескольких получателей, указывая их адреса в заголовочной части пакетов;
  2. получив определенный объем информации, можно убедиться, что содержащиеся в них данные точно соответствуют тому, что было отправлено; для этого в последовательность пакетов добавляются так называемые контрольные суммы — особым образом подсчитанные числа, на которые влияет каждый бит переданной информации; если хотя бы один бит на стороне приемника будет отличаться (например, из-за помех на линии), то контрольные суммы приемника и передатчика не совпадут и станет понятно, что информация принята с искажениями, следует повторить ее отправку/прием.

Пакетный принцип положен в основу протоколов (правил обмена информацией), используемых в современных компьютерных сетях. В большинстве из них используется семейство TCP/IP — набор протоколов для обмена данными в глобальной сети Интернет, представляющей собой объединение локальных сетей.

Ключевым методом, позволяющим компьютерам, подключенным к разным сетям обмениваться информацией, является маршрутизация. Пакеты, отправляемые внутри локальной сети, принимаются всеми компьютерами, но каждый обрабатывает лишь те, в которых находит свой адрес. Частью адреса является еще и номер сети, который тоже анализируется каждым получателем. Этот номер должен совпадать с заранее настроенным номером, хранящимся в памяти компьютера. Однако среди компьютеров есть такие, которые подключены одновременно к более чем одной сети. Они называются маршрутизаторами (в англоязычной традиции роутерами, а также шлюзами). Если роутер обнаруживает, что пакет предназначен компьютеру чужой по отношению к отправителю сети, он отправляет его во внешнюю сеть. Соседняя сеть также может передать пакет дальше, пока через цепочку шлюзов он не достигает адресата или не вернется с пометкой, что доставка невозможна.

Рисунок 2. Структура заголовка IP-пакета. Автор24 — интернет-биржа студенческих работ

Маршруты, по которым идут пакеты от отправителя к получателю, могут меняться. Интернет — децентрализованная система, в которой нет единого центра управления. Поэтому при повреждении части глобальной сети информация по ней все равно будет передаваться по альтернативным маршрутам, хотя, возможно, и с более низкой скоростью.

Служба доменных имен (DNS)

Структура пакетов протокола TCP/IP, а также правила адресации и маршрутизации в Интернете достаточно сложны для обычного пользователя. Для удобства обращения к ресурсам глобальной сети разработана система доменных имен.

Домен — совокупность сетевых сервисов, принадлежащих организации или частному лицу.

Домен характеризуется особыми именем, регистрируемым в международной организации ICANN, например, yandex.ru. Последние две буквы имени домена обозначают национальную принадлежность (ru — Россия, by — Беларусь, kz — Казахстан, us — Соединенные Штаты и т.п.) или назначение домена (biz — для бизнеса, org — некоммерческие организации, academy — образование и т.п.).

Для преобразования удобных для человеческого запоминания доменных имен в IP-адреса, обрабатываемые компьютерами, предназначена служба доменных имен (DNS, Domain Name Service).

Рисунок 3. Принцип работы DNS. Автор24 — интернет-биржа студенческих работ

Сервисы, принадлежащие домену, могут размешаться на разных компьютерах и даже в разных сетях. Поэтому фраза "компьютер принадлежит домену" не совсем корректна. На одном компьютере могут быть запущены сервисы, принадлежащие разным доменам.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Ссылка на основную публикацию
Устройство для жарки стейков
Гриль Weber Q-2400 В линейке электрических грилей Q-LINE у Weber всего два агрегата — компания считается экспертом в угольных и...
Установка крана на пвх трубу
Появление множества новых материалов привело к появлению новых комплектующих и даже новых способов соединения фрагментов трубопровода: ведь понятно, что фитинги...
Установка ксенона вместо галогена
Приветствуем всех читателей нашего с Перчинкой БЖ и просто гостей странички. Наконец-то дошли руки написать важную для многих вторую часть...
Устройство для настройки спутниковых антенн триколор
Автор: Administrator вкл. 21 марта 2012 . Индикатор настройки спутникового сигнала Sat-Finder В наше время, становится достаточно популярным способом настройки...
Adblock detector