Управление вентиляцией на arduino

Управление вентиляцией на arduino

Представляю мой новый проект — автоматическое управление отоплением и вентиляцией на базе Arduino Nano 3.0.

Довольно долго я бился над решением задачи создания оптимального микроклимата в ванной комнате, и наконец-то, благодаря знаниям, полученным в процессе изучения Arduino и различных датчиков температуры и влажности, мне это удалось! 🙂

Началось все с того, что в весенний и осенний периоды, когда погода на улице еще не стабилизировалась, в ванной комнате наблюдались постоянные перепады температуры и влажности. Обогреватель то и дело перегревал воздух в дневное время, а если его отключить, то воздух становился неприемлемо холодным для ванной комнаты. То же самое и с влажностью. Постоянно включенная вытяжка приводила к переохлаждению комнаты в ночное время, а днем, если вытяжку не включить, происходило чрезмерное оседание конденсата, о борьбе с которым я уже писал ранее. В итоге, устав от необходимости бегать включать/выключать батарею и вытяжку по нескольку раз в день, а также имея практический опыт создания автоматизированной заслонки на базе Arduino, решил сконструировать прибор для автоматического управления отоплением и вентиляцией в ванной комнате. О результатах проделанной работы рассказано в этом видео.

А теперь предлагаю подробнее рассмотреть как все работает, включая программу (скетч) для Arduino!

На передней панели системы управления отоплением и вентиляции находится двухстрочный дисплей LCD 1602 I2C, который отображает текущие значения температуры и влажности, а также позволяет просматривать меню установок прибора. Красная и зеленая кнопки — кнопки управления (оказалось вполне достаточно двух кнопок для изменения настроек и управления устройством). Красный светодиод загорается при включении отопления, а зеленый — при включении вентиляции. На левой стороне расположен датчик температуры и влажности DHT22 а также USB-порт модуля Arduino, который пришлось заклеить для лучшей сохранности.

Система для управления отоплением и вентиляцией на базе Arduino. Вид сбоку

На правой стороне устройства находится выключатель и система охлаждения, представляющая собой компьютерный вентилятор, работающий на вытяжку. Без него корпус системы нагревался (от встроенного блока питания и реле), что приводило к неверным показаниям датчика температуры, т.к. он расположен близко к корпусу.

Система для управления отоплением и вентиляцией на базе Arduino. Вид сбоку

Система контроля микроклимата работает от сети 220 вольт и подключена к ближайшей розетке.

Система для управления отоплением и вентиляцией на базе Arduino.

Заглянем внутрь корпуса. Сам корпус является обычной распределительной коробкой. На его передней панели имеются 4 болта, открутив которые можно легко и быстро получить доступ к мозгам системы, а также к коммутационным реле, которые управляют нагрузкой.

Система для управления отоплением и вентиляцией на базе Arduino со снятой лицевой панелью

Внутри находится сборка из модуля ардуино нано 3.0, силовых реле с максимальным током до 10 ампер, и блоком питания на 9 вольт.

Система для управления отоплением и вентиляцией на базе Arduino. Вид изнутри

Панель управления подключена к основному модулю при помощи шлейфов.

Система для управления отоплением и вентиляцией на базе Arduino. Вид изнутри

Панель управления можно легко отсоединить от устройства для проведения профилактических работ или модернизации. Как уже упоминалось выше, в состав панели входит LCD модуль, 2 светодиода и 2 управляющие кнопки.

Панель управления системы контроля микроклимата на базе Arduino

Управляющий модуль сконструирован на монтажной плате и имеет разъемы для подключения датчика влажности и температуры DHT22, панели управления, нагрузки (4 разъема), а также источника питания. Первый, второй и четвертый разъемы работают в режиме ключа (замыкают и размыкают цепь). Третий разъем обеспечивает выход с напряжением 5 вольт для управления дистанционной розеткой.

Главный модуль системы контроля микроклимата на базе Arduino

Силовые элементы надежно припаяны при помощи медных проводов на обратной стороне монтажной платы. Логические элементы аккуратно спаяны меду собой, все реле управляются через транзисторы. Ссылку на схему более совершенной модели этого прибора см. в конце статьи!

Главный модуль системы контроля микроклимата на базе Arduino. Монтажная плата

Корпус системы — обычная электрическая разветвительная коробка стандартного размера.

Корпус системы контроля микроклимата

Настенный конвектор, отлично подсушивающий влажный воздух, находится на противоположной стене от модуля управления микроклиматом.

Настенный конвектор, управляемый системой на базе Arduino

Розетка с дистанционным управлением системы контроля микроклимата на базе Arduino

Теперь, пожалуй, самое интересное 🙂 Предлагаю вашему вниманию полный скетч для управления отоплением и вентиляцией на базе Arduino. Скажу сразу, что скетч модернизировался после первого запуска системы целых 3 раза. И на то были определенные причины.

Изначально температура измерялась каждые 2 секунды, и в зависимости от этого срабатывали правила включения и выключения электроприборов. Бывало так, что вытяжка включалась и выключалась каждые 2 секунды, в моменты колебания влажности или температуры на пограничных значениях.

Решением данной ситуации стало изменение алгоритма программы таким образом, чтобы измерения проводились 5 раз подряд (в течение 10 секунд), а затем для всех показателей вычислялось среднее значение, на основании которого применялись правила включения/отключения нагрузки. Это позволило избавиться от таких «скачков» с выключением вытяжки или батареи!

Итак, скетч под этим спойлером:

Скетч занимает около 50% памяти ардуино и требует дополнительных библиотек для работы с датчиком DHT22 и экраном LCD через интерфейс I2C, найти которые можно на просторах интернета.

На момент написания статьи уже месяц система работает в штатном режиме, микроклимат в ванной стал практически идеальным, конечно пришлось несколько раз менять настройки включения и выключения вытяжки и батареи, но подобрав нужные параметры все стало просто идеально — и днем и ночью комфортные ощущения при нахождении в этом помещении! 🙂

Обновлено 05.11.2018

Прошло пол года с момента начала активной эксплуатации устройства, и обнаружились некоторые проблемы, а именно, периодические зависания модуля ардуино. Начав разбираться, первым делом наткнулся на некий WatchDog, который способен автоматически перезагрузить систему при зависании микроконтроллера. Подумал — вот оно подходящее решение. Но как выяснилось, на моей китайской копии Arduino Nano 3.0 WatchDog работает неправильно из-за некорректной прошивки загрузчика. Для того чтобы это исправить, нужна «правильная» прошивка загрузчика, найти которую можно в интернете, и программатор, которым все это дело будет «зашиваться» внутрь чипа. Пока ждал программатор с Китая, решил поискать реальные причины зависания контроллера.

Читайте также:  Выкладка кафеля на кухне

Просадка напряжения

Пытаясь найти объективную причину зависания, я стал грешить на некачественный блок питания и просадку напряжения при включении реле, особенно когда несколько реле включаются одновременно, ведь зависания происходили не так часто, а всего лишь 1-2 раза в месяц.

Первым делом решил добавить 2 конденсатора по 1000 мкф в надежде, что они уменьшат просадку напряжения при срабатывании реле. Первый поставил параллельно выходу с блока питания (там кстати уже был свой конденсатор, но второй лишним не будет, подумал я), а второй — установил параллельно выходу +5V на плате ардуино, откуда как раз берется питание для реле. С этого же выхода питается и сам микроконтроллер. Складывается логичная ситуация — когда все реле включаются одновременно, микроконтроллеру не хватает напряжения и он зависает.

После добавление конденсаторов зависания практически прекратились, но все же, 1 раз в месяц могло и зависнуть.

Доработка скетча Ардуино

Поигравшись с конденсаторами, решил проверить программное обеспечение устройства на наличие неоптимального кода, который мог бы приводить к зависаниям микроконтроллера. Первым делом начал с проверки процедуры DoAll(), которая управляет включением и отключением реле. И тут меня как осенило, откуда берутся просадки напряжения.

Дело в том, что после обработки данных, полученных с датчиков, и включении/выключении какого-либо реле, происходил мгновенный переход к следующей обработке данных с датчиков, и включение/выключение следующего реле, и так далее. Фактически, все реле действительно могли включаться или отключаться одновременно, с задержкой менее 1 мсек, поскольку между обработкой данных для каждого реле отсутствовала пауза.

Исправив код этой процедуры, а именно, добавив искусственную задержку в 200 миллисекунд после включения/отключения какого-либо реле, я был крайне удивлен стабильной работой прибора. Зависания вовсе прекратились, и вот уже 2 месяца прибор работает стабильно. Теперь и WatchDog не нужен, хотя конечно он не помешает, на всякий случай.

В итоге можно сказать, что причиной зависания являлась несбалансированность нагрузки на источник питания при выполнении программного кода, а также низкое качество источника питания. Исправив программу, исчез и дисбаланс. Ниже представлен исправленный фрагмент кода процедуры DoAll(). Жирным текстом выделены те самые задержки по 200 мсек, которые были добавлены в программу и кардинально повысили стабильность работы микроконтроллера.

Обновлено 02.02.2019

Зимой обнаружилось, что из одной из вытяжет стал капать конденсат, поэтому было решено отключать на зиму этот вентилятор. И чтобы не лазить каждый сезон с отверткой в развет коробку и уж тем более в само устройство, решил сделать все программно, поскольку каждый вентилятор управляется отдельным реле. Немного переработал скетч, добавив дополнительный экран настроек, на котором можно задействовать или отключить каждый вентилятор по отдельности Также уменьшил время одновременного нажатия кнопок для переключения между экранами настроек с 3 до 2 секунд. Свежий скетч можно скачать по ссылке ниже

Представляю мой новый проект — автоматическое управление отоплением и вентиляцией на базе Arduino Nano 3.0.

Довольно долго я бился над решением задачи создания оптимального микроклимата в ванной комнате, и наконец-то, благодаря знаниям, полученным в процессе изучения Arduino и различных датчиков температуры и влажности, мне это удалось! 🙂

Началось все с того, что в весенний и осенний периоды, когда погода на улице еще не стабилизировалась, в ванной комнате наблюдались постоянные перепады температуры и влажности. Обогреватель то и дело перегревал воздух в дневное время, а если его отключить, то воздух становился неприемлемо холодным для ванной комнаты. То же самое и с влажностью. Постоянно включенная вытяжка приводила к переохлаждению комнаты в ночное время, а днем, если вытяжку не включить, происходило чрезмерное оседание конденсата, о борьбе с которым я уже писал ранее. В итоге, устав от необходимости бегать включать/выключать батарею и вытяжку по нескольку раз в день, а также имея практический опыт создания автоматизированной заслонки на базе Arduino, решил сконструировать прибор для автоматического управления отоплением и вентиляцией в ванной комнате. О результатах проделанной работы рассказано в этом видео.

А теперь предлагаю подробнее рассмотреть как все работает, включая программу (скетч) для Arduino!

На передней панели системы управления отоплением и вентиляции находится двухстрочный дисплей LCD 1602 I2C, который отображает текущие значения температуры и влажности, а также позволяет просматривать меню установок прибора. Красная и зеленая кнопки — кнопки управления (оказалось вполне достаточно двух кнопок для изменения настроек и управления устройством). Красный светодиод загорается при включении отопления, а зеленый — при включении вентиляции. На левой стороне расположен датчик температуры и влажности DHT22 а также USB-порт модуля Arduino, который пришлось заклеить для лучшей сохранности.

Система для управления отоплением и вентиляцией на базе Arduino. Вид сбоку

На правой стороне устройства находится выключатель и система охлаждения, представляющая собой компьютерный вентилятор, работающий на вытяжку. Без него корпус системы нагревался (от встроенного блока питания и реле), что приводило к неверным показаниям датчика температуры, т.к. он расположен близко к корпусу.

Система для управления отоплением и вентиляцией на базе Arduino. Вид сбоку

Система контроля микроклимата работает от сети 220 вольт и подключена к ближайшей розетке.

Система для управления отоплением и вентиляцией на базе Arduino.

Заглянем внутрь корпуса. Сам корпус является обычной распределительной коробкой. На его передней панели имеются 4 болта, открутив которые можно легко и быстро получить доступ к мозгам системы, а также к коммутационным реле, которые управляют нагрузкой.

Система для управления отоплением и вентиляцией на базе Arduino со снятой лицевой панелью

Внутри находится сборка из модуля ардуино нано 3.0, силовых реле с максимальным током до 10 ампер, и блоком питания на 9 вольт.

Система для управления отоплением и вентиляцией на базе Arduino. Вид изнутри

Панель управления подключена к основному модулю при помощи шлейфов.

Система для управления отоплением и вентиляцией на базе Arduino. Вид изнутри

Панель управления можно легко отсоединить от устройства для проведения профилактических работ или модернизации. Как уже упоминалось выше, в состав панели входит LCD модуль, 2 светодиода и 2 управляющие кнопки.

Панель управления системы контроля микроклимата на базе Arduino

Читайте также:  Кустарники для сада и огорода название

Управляющий модуль сконструирован на монтажной плате и имеет разъемы для подключения датчика влажности и температуры DHT22, панели управления, нагрузки (4 разъема), а также источника питания. Первый, второй и четвертый разъемы работают в режиме ключа (замыкают и размыкают цепь). Третий разъем обеспечивает выход с напряжением 5 вольт для управления дистанционной розеткой.

Главный модуль системы контроля микроклимата на базе Arduino

Силовые элементы надежно припаяны при помощи медных проводов на обратной стороне монтажной платы. Логические элементы аккуратно спаяны меду собой, все реле управляются через транзисторы. Ссылку на схему более совершенной модели этого прибора см. в конце статьи!

Главный модуль системы контроля микроклимата на базе Arduino. Монтажная плата

Корпус системы — обычная электрическая разветвительная коробка стандартного размера.

Корпус системы контроля микроклимата

Настенный конвектор, отлично подсушивающий влажный воздух, находится на противоположной стене от модуля управления микроклиматом.

Настенный конвектор, управляемый системой на базе Arduino

Розетка с дистанционным управлением системы контроля микроклимата на базе Arduino

Теперь, пожалуй, самое интересное 🙂 Предлагаю вашему вниманию полный скетч для управления отоплением и вентиляцией на базе Arduino. Скажу сразу, что скетч модернизировался после первого запуска системы целых 3 раза. И на то были определенные причины.

Изначально температура измерялась каждые 2 секунды, и в зависимости от этого срабатывали правила включения и выключения электроприборов. Бывало так, что вытяжка включалась и выключалась каждые 2 секунды, в моменты колебания влажности или температуры на пограничных значениях.

Решением данной ситуации стало изменение алгоритма программы таким образом, чтобы измерения проводились 5 раз подряд (в течение 10 секунд), а затем для всех показателей вычислялось среднее значение, на основании которого применялись правила включения/отключения нагрузки. Это позволило избавиться от таких «скачков» с выключением вытяжки или батареи!

Итак, скетч под этим спойлером:

Скетч занимает около 50% памяти ардуино и требует дополнительных библиотек для работы с датчиком DHT22 и экраном LCD через интерфейс I2C, найти которые можно на просторах интернета.

На момент написания статьи уже месяц система работает в штатном режиме, микроклимат в ванной стал практически идеальным, конечно пришлось несколько раз менять настройки включения и выключения вытяжки и батареи, но подобрав нужные параметры все стало просто идеально — и днем и ночью комфортные ощущения при нахождении в этом помещении! 🙂

Обновлено 05.11.2018

Прошло пол года с момента начала активной эксплуатации устройства, и обнаружились некоторые проблемы, а именно, периодические зависания модуля ардуино. Начав разбираться, первым делом наткнулся на некий WatchDog, который способен автоматически перезагрузить систему при зависании микроконтроллера. Подумал — вот оно подходящее решение. Но как выяснилось, на моей китайской копии Arduino Nano 3.0 WatchDog работает неправильно из-за некорректной прошивки загрузчика. Для того чтобы это исправить, нужна «правильная» прошивка загрузчика, найти которую можно в интернете, и программатор, которым все это дело будет «зашиваться» внутрь чипа. Пока ждал программатор с Китая, решил поискать реальные причины зависания контроллера.

Просадка напряжения

Пытаясь найти объективную причину зависания, я стал грешить на некачественный блок питания и просадку напряжения при включении реле, особенно когда несколько реле включаются одновременно, ведь зависания происходили не так часто, а всего лишь 1-2 раза в месяц.

Первым делом решил добавить 2 конденсатора по 1000 мкф в надежде, что они уменьшат просадку напряжения при срабатывании реле. Первый поставил параллельно выходу с блока питания (там кстати уже был свой конденсатор, но второй лишним не будет, подумал я), а второй — установил параллельно выходу +5V на плате ардуино, откуда как раз берется питание для реле. С этого же выхода питается и сам микроконтроллер. Складывается логичная ситуация — когда все реле включаются одновременно, микроконтроллеру не хватает напряжения и он зависает.

После добавление конденсаторов зависания практически прекратились, но все же, 1 раз в месяц могло и зависнуть.

Доработка скетча Ардуино

Поигравшись с конденсаторами, решил проверить программное обеспечение устройства на наличие неоптимального кода, который мог бы приводить к зависаниям микроконтроллера. Первым делом начал с проверки процедуры DoAll(), которая управляет включением и отключением реле. И тут меня как осенило, откуда берутся просадки напряжения.

Дело в том, что после обработки данных, полученных с датчиков, и включении/выключении какого-либо реле, происходил мгновенный переход к следующей обработке данных с датчиков, и включение/выключение следующего реле, и так далее. Фактически, все реле действительно могли включаться или отключаться одновременно, с задержкой менее 1 мсек, поскольку между обработкой данных для каждого реле отсутствовала пауза.

Исправив код этой процедуры, а именно, добавив искусственную задержку в 200 миллисекунд после включения/отключения какого-либо реле, я был крайне удивлен стабильной работой прибора. Зависания вовсе прекратились, и вот уже 2 месяца прибор работает стабильно. Теперь и WatchDog не нужен, хотя конечно он не помешает, на всякий случай.

В итоге можно сказать, что причиной зависания являлась несбалансированность нагрузки на источник питания при выполнении программного кода, а также низкое качество источника питания. Исправив программу, исчез и дисбаланс. Ниже представлен исправленный фрагмент кода процедуры DoAll(). Жирным текстом выделены те самые задержки по 200 мсек, которые были добавлены в программу и кардинально повысили стабильность работы микроконтроллера.

Обновлено 02.02.2019

Зимой обнаружилось, что из одной из вытяжет стал капать конденсат, поэтому было решено отключать на зиму этот вентилятор. И чтобы не лазить каждый сезон с отверткой в развет коробку и уж тем более в само устройство, решил сделать все программно, поскольку каждый вентилятор управляется отдельным реле. Немного переработал скетч, добавив дополнительный экран настроек, на котором можно задействовать или отключить каждый вентилятор по отдельности Также уменьшил время одновременного нажатия кнопок для переключения между экранами настроек с 3 до 2 секунд. Свежий скетч можно скачать по ссылке ниже

В последнее время на Хабре появилась масса постов про построение мониторов качества воздуха. При этом ни одной попытки управления качеством воздуха не нашел, а ведь как только мы переходим от пассивного наблюдения к активному управлению — возникает масса интересных проблем и решений. Своими скромными наработками в этой области и хочу поделиться.

Читайте также:  Как правильно обработать грецкие орехи

Итак, дано: Гараж неотапливаемый, не утепленный, кирпичный двухэтажный с огромной влажностью внутри, от которой гниет деревянное межэтажное перекрытие, на стенах зимой снежная шуба и прочая неприятная ржавчина.

Задача: «Осушить» гараж.

Решение. Не будем вдаваться в подробности капиллярного подсоса воды бетоном и прочих источников появления влаги в воздухе гаража — сосредоточимся на том, что мы можем сделать с уже появившейся влагой. Если не рассматривать слишком дорогую для гаража технику типа осушителей, то единственный способ, который я нашел, это вытеснять внутренний сырой воздух более сухим наружным при помощи простого вентилятора.

Arduino, два датчика DHT22 изнутри и снаружи, релейный модуль на вентилятор и начинаются действительно интересные проблемы.

Как известно, DHT22 отдает температуру и относительную влажность. Как сравнивать показания датчиков? Действительно ли наружный воздух «суше», чем внутренний? Что будет с воздухом, если его всосать в гараж? Возможно, он настолько теплее, что даже при меньшей относительной влажности снаружи даст конденсат на стенах внутри. Внутренняя температура всегда отличается от наружной, но при этом постепенно стремится к наружной. Степень «постепенности» неизвестна. Будет температура расти или падать — так же неизвестно.

Первой мыслью было пытаться строить массивы показаний датчиков и пытаться прогнозировать влияние наружного воздуха на внутренний, но куча изрисованных бумажек так и не позволила выстроить в голове внятную модель для реализации.

Но пришла следующая идея. Абсолютная влажность она на то и абсолютная, что от давления, температуры и прочего не зависит. И если абсолютная влажность наружного воздуха ниже абсолютной влажности внутреннего, то наружный воздух однозначно «суше» и независимо от того, как изменится его температура внутри — он «лучше» замещенного воздуха.

Идея — идеей, но и тут оказались мелкие проблемы. Оказывается абсолютная влажность вычисляется по температуре и относительной влажности по графикам типа такого:

И никакого точного способа пересчета нет. Зато есть достаточно большое разнообразие аппроксимирующих формул. По итогу была выбрана вот эта формула, а точнее формулы, поскольку для положительной и отрицательной температуры формулы разные.

Казалось бы, на этом и все. Сравниваем две абсолютные влажности и если снаружи «суше» — включаем вентилятор, но не тут то было. Первая проблема в том, что если представить, что наружный воздух имеет постоянную влажность, а внутри никакого источника влаги нет, но есть сырой воздух, то при прокачивании через гараж наружный воздух будет смешиваться с имеющимся там воздухом и внутренняя влажность будет бесконечно приближаться к наружной, но не достигнет ее или достигнет очень не скоро. А это крайне неэффективно по электричеству. Очевидное решение — ввести какую-то разность влажностей, при достижении которой вентилятор выключать и считать внутренний воздух сухим, но тут возникает вторая проблема. При перепаде температур от +30 до -30 значение абсолютной влажности изменяется в тысячу раз. То есть при -30 градусах разница в 0.001 грамма на кубометр воздуха может означать, что вы пройдете точку росы и на стенах выпадет шуба. А при +30 эта тысячная ничего не значит, потому что в кубометре может висеть 20 грамм воды.

Никакого четкого, обоснованного решения придумано не было. Волевым научным тыком разность была принята в 0.01 грамма на кубометр из того соображения, что от инея на стенах вреда не много, поскольку при повышении температуры, при работе робота — лед просто сублимирует и будет удален с остальным воздухом. И из эмпирических соображений было введено еще одно энергосберегающее ограничение. При относительной наружной влажности выше 90% наружный воздух не прокачивается. Просто потому, что это ненормально высокая для нашего региона влажность и даже если этот воздух суше внутреннего — очень скоро и его тоже придется выкачивать. Цифра 90% так же с потолка.

Полтора года робот пашет безостановочно.

Ардуино в коробке с автоматом, там же блок питания. На ней же справа внутренний датчик. Релейный блок в самой розетке. Выключатель принудительно включает вентилятор в обход реле. Шуба из инея зимой пропала. Дерево все рассохлось. Ничего не гниет. Потребляет порядка двух киловатт-часов в месяц. Если в «сухом» гараже подышать минут 15 — робот включает вентилятор. В общем, все работает.

Побочный эффект — вымораживает. Причем вымораживает так, что шуба из инея теперь периодически появляется снаружи, а в мае, когда светит солнышко и зеленеет травка — внутри без ватника трясет от холода.

Поле для оптимизации. Если прикрутить SD-карточку и пособирать статистику — можно выбрать более обоснованную отсечку, чем 90%. Можно подумать и поставить разность абсолютных влажностей на отсечку в зависимость от температуры.

А вот теперь самое интересное — развитие.

Сейчас прорабатывается система приточно-вытяжной вентиляции с рекуперацией для частного дома. Задача снизить расход энергии и на вентиляцию и на обогрев. Казалось бы, все просто. Датчики СО2 по комнатам. Вентилируем только ту комнату, где «надышали», но есть масса вопросов, на которые у меня пока нет ответов. Буду рад помощи.

1. Как контролировать отток через печку? Вот есть частотник на приточном вентиляторе, есть на вытяжном. Если бы не печка, можно было бы обойтись одним и крутить вентиляторы синхронно. А как быть с оттоком через печь? (Отдельный воздуховод на приток печи — не предлагать);
2. (без учета печки) Алгоритм управления оборотами вентиляторов? Текущая идея в том, что скорость вращения должна зависеть не от концентрации СО2 а от скорости роста концентрации. То есть если концентрация растет — обороты растут, падает — падают и какая-то отсечка, скажем, 500-600ppm. Повышением отсечки можно ввести зимний экономный режим с повышенной концентрацией СО2;
3. Есть желание заслонку печки привязать к датчику СО, в том плане, чтобы он держал заслонку максимально закрытой максимальное количество времени, но страшно;
4. Чисто технический вопрос: как все это датчиковое великолепие максимально дешево развесить по дому, поскольку для целей управления отоплением еще и DHT22 в каждой комнате будут?

Спасибо за внимание. Схему робота я не рисовал, скетч вышлю всем желающим, с радостью приму конструктивные предложения.

Ссылка на основную публикацию
Улитки для холодной ковки металла
Главная страница » улитки для холодной ковки На данной странице вы найдете сведения по теме “улитки для холодной ковки”, а...
Удобное хранение детских вещей
Вы устали раскладывать вещи ребенка по своим местам и объяснять ему, что рубашки в шкафу должны висеть, а носки лежать?...
Удобрение для комнатных растений фаско как применять
Комнатные растения развиваются в небольшом пространстве, если в грунте исчезли питательные вещества, необходимые для роста, нарушается здоровье цветов. Важные компоненты...
Уличная веранда на даче
Терраса может принести пользу почти каждому дому. Если вы ищите вдохновение для строительства своей террасы на даче, используйте фото террас...
Adblock detector