Эффективный источник питания асинхронного двигателя

Эффективный источник питания асинхронного двигателя

Бесплатная техническая библиотека:
▪ Все статьи А-Я
▪ Энциклопедия радиоэлектроники и электротехники
▪ Новости науки и техники
▪ Журналы, книги, сборники
▪ Архив статей и поиск
▪ Схемы, сервис-мануалы
▪ Электронные справочники
▪ Инструкции по эксплуатации
▪ Голосования
▪ Ваши истории из жизни
▪ На досуге
▪ Случайные статьи
▪ Отзывы о сайте

Справочник:
▪ Большая энциклопедия для детей и взрослых
▪ Биографии великих ученых
▪ Важнейшие научные открытия
▪ Детская научная лаборатория
▪ Должностные инструкции
▪ Домашняя мастерская
▪ Жизнь замечательных физиков
▪ Заводские технологии на дому
▪ Загадки, ребусы, вопросы с подвохом
▪ Инструменты и механизмы для сельского хозяйства
▪ Искусство аудио
▪ Искусство видео
▪ История техники, технологии, предметов вокруг нас
▪ И тут появился изобретатель (ТРИЗ)
▪ Конспекты лекций, шпаргалки
▪ Крылатые слова, фразеологизмы
▪ Личный транспорт: наземный, водный, воздушный
▪ Любителям путешествовать — советы туристу
▪ Моделирование
▪ Нормативная документация по охране труда
▪ Опыты по физике
▪ Опыты по химии
▪ Основы безопасной жизнедеятельности (ОБЖД)
▪ Основы первой медицинской помощи (ОПМП)
▪ Охрана труда
▪ Радиоэлектроника и электротехника
▪ Строителю, домашнему мастеру
▪ Типовые инструкции по охране труда (ТОИ)
▪ Чудеса природы
▪ Шпионские штучки
▪ Электрик в доме
▪ Эффектные фокусы и их разгадки

Техническая документация:
▪ Схемы и сервис-мануалы
▪ Книги, журналы, сборники
▪ Справочники
▪ Параметры радиодеталей
▪ Прошивки
▪ Инструкции по эксплуатации
▪ Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(150000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
▪ Ваши истории
▪ Загадки для взрослых и детей
▪ Знаете ли Вы, что.
▪ Зрительные иллюзии
▪ Веселые задачки
▪ Каталог Вивасан
▪ Палиндромы
▪ Сборка кубика Рубика
▪ Форумы
▪ Карта сайта

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

При использовании материалов сайта обязательна ссылка на http://www.diagram.com.ua


сделано в Украине

Источник питания трехфазного электродвигателя от однофазной сети с регулировкой частоты вращения

Асинхронные электродвигатели (в том числе трехфазные) находят широкое применение в быту и на производстве для привода машин и механизмов, скорость работы которых постоянна или изменяется с помощью редукторов с переменным передаточным числом и других механических приспособлений. Там, где необходимо плавно регулировать частоту вращения вала, предпочтение отдают, как правило, более дорогим и менее надежным коллекторным электродвигателям, у которых эту операцию выполнить просто — достаточно изменять напряжение питания или ток в обмотке возбуждения. Чтобы управлять частотой вращения вала асинхронного двигателя, приходится изменять не только напряжение, но и частоту переменного тока в его обмотках. Автор предлагаемой статьи рассказывает о своем решении этой задачи. Разработанное им устройство позволяет питать от однофазной сети асинхронный трехфазный двигатель мощностью до 3,5 кВт и изменять частоту его вращения более чем в 10 раз.

Нередко возникает необходимость плавно изменять скорость работы машин и механизмов, снабженных электроприводом. Обычно применяемые в таких случаях коллекторные электродвигатели дороги, требуют периодического обслуживания и уступают асинхронным в надежности, сроке службы и массогабаритных показателях.

Промышленность выпускает устройства частотного регулирования скорости вращения асинхронных двигателей.

Эти приборы сложны и дороги, поэтому применяют их лишь в ответственных случаях, например, в приводах станков с ЧПУ. Схемы подобных регуляторов для самостоятельного изготовления были опубликованы и в журнале "Радио" [1, 2]. К сожалению, рассчитаны они на двигатели очень небольшой мощности

Основная проблема, возникающая при разработке частотного регулятора, состоит в необходимости изменять вместе с частотой и эффективное значение подаваемого на обмотки двигателя напряжения. Дело в том, что со снижением частоты переменного тока уменьшается индуктивное сопротивление обмотки, что приводит к недопустимому возрастанию протекающего по ней тока. Чтобы избежать перегрева обмотки и насыщения магнитопровода статора, необходимо снижать напряжение питания двигателя.

Один из способов сделать это, рекомендованный в [3], состоит в подключении двигателя через регулируемый автотрансформатор, подвижный контакт которого механически связан с регулятором частоты. Способ, нужно сказать, весьма неудобный, так как масса и размеры автотрансформатора сравнимы с аналогичными показателями самого двигателя, а надежность подвижного контакта при передаче большой мощности вызывает сомнения. Гораздо удобнее изменять эффективное значение напряжения с помощью широтноимпульсной модуляции (ШИМ) [4]. В основе предлагаемого регулируемого источника питания асинхронного трехфазного электродвигателя лежит именно такой метод.

Источник построен по схеме, изображенной на рис. 1.

Мощный выпрямитель, входящий в состав блока питания и защиты БПЗ, преобразует однофазное переменное напряжение 220 В 50 Гц в постоянное 300 В. С помощью трех сдвоенных силовых ключей СК1 — СКЗ коммутируют обмотки трехфазного электродвигателя М1, подключая их в нужных очередности и полярности к выходу выпрямителя. Цепи VD1L1 и VD2L2 защищают ключи от бросков тока нагрузки.

Импульсы, управляющие ключами, генерируют блок ФИУ — формирователь управляющих импульсов. В БПЗ имеются еще несколько маломощных выпрямителей для питания ФИУ и СК, а также узел токовой защиты, отключающий устройство от сети при превышении допустимого значения потребляемого тока.

Схема ФИУ показана на рис. 2.


(нажмите для увеличения)

На микросхеме DD1 выполнен генератор тактовых импульсов. Их частоту регулируют переменным резистором R4.1 от 30 до 400 Гц. Частота импульсов на выходах микросхем DD4 и DD5 в шесть раз ниже — от 5 до 66,7 Гц. Ток именно такой частоты потечет в обмотках двигателя М1 (см. рис. 1), задавая частоту вращения его вала. Уменьшать частоту ниже указанного предела не стоит, станет заметной неравномерность вращения вала. А при частоте выше номинальной (50 Гц) резко падает момент на валу двигателя.

Цепи R5VD3C3-R10VD8C8 задерживают фронты управляющих импульсов, оставляя их спады незадержанными. Это необходимо, чтобы выходные транзисторы ключей, составляющих пару (например, СК1.1 и СК1.2), даже на очень короткое время не оказались открытыми одновременно, что было бы равносильно короткому замыканию источника постоянного напряжения 300 В и привело бы в лучшем случае к перегреву, а в худшем — к выходу из строя этих транзисторов, а с ними и других элементов СК.

На входы логических элементов DD6.1-DD6.4, DD2.3, DD2.4, кроме импульсов частотой 5. 66,7 Гц, поступают более высокочастотные импульсы регулируемой скважности от генератора на элементах DD2.1, DD2.2. Переменные резисторы R4.1 и R4.2 спарены, поэтому на выходах перечисленных выше элементов одновременно с изменением частоты повторения пачек изменяется скважность заполняющих эти пачки импульсов.

Резисторы R2 и R3 подобраны таким образом, что при номинальных или повышенных оборотах на двигатель поступает практически полное напряжение, а с их уменьшением оно снижается приблизительно в два раза. В результате при пониженной в десять раз частоте ток, потребляемый электродвигателем, лишь незначительно превышает номинальный.

Инверторы DD7.1-DD7.6 с повышенной нагрузочной способностью служат буферными элементами. В их выходные цепи включены светодиоды оптронов, установленных в ключах СК1-СКЗ и обеспечивающих гальваническую развязку между цепями управления и силовыми узлами источника.

Схема СК представлена на рис. 3. Всего таких ключей шесть (по два на каждую фазу). В интервалы времени, когда через светодиод оптрона U1 ток не течет, вследствие чего его фотодиод имеет высокое сопротивление, транзисторы VT1 и VT2 открыты, VT3 и VT4 закрыты — ключ разомкнут. При протекании тока через светодиод ключ замкнут. Элементы VD3-VD6, R3 и С1 обеспечивают форсированное закрывание транзистора VT4, что снижает потери энергии и облегчает тепловой режим ключа.

Диод VD7 защищает транзистор VT4 от выбросов напряжения на индуктивной нагрузке. Подробнее узнать об устройстве силовых ключей и способах их защиты можно в книге [4]. До знакомства с ней автор сжег немало дорогих транзисторов большой мощности.

Схема БПЗ показана на рис. 4.

Ко вторичным обмоткам трансформатора Т1 подключены четыре выпрямителя. Первый из них, на диодном мосте VD1, служит для питания узлов управления ключей СК1.2-СКЗ.2. От него же через стабилизатор на транзисторе VT1 питают микросхемы ФИУ. Для питания узлов управления ключей СК1.1 — СК3.1, находящихся под высоким потенциалом, служат три изолированных выпрямителя на диодных мостах VD2- VD4.

Силовой выпрямитель собран на диодах VD7-VD10 и снабжен сглаживающим фильтром C7L1C8. Нажатием на кнопку SB2 замыкают цепь обмотки контактора КМ1. Сработавший контактор остается в таком состоянии благодаря замкнувшимся контактам КМ1.2. Напряжение 220 В, 50 Гц поступает на диодный мост VD7-VD10 через замкнувшиеся контакты КМ 1.1 и первичную обмотку трансформатора тока Т2 Вы ключают контактор и электродвигатель М1 (см. рис. 1) нажатием на кнопку SB1.

Читайте также:  Угловые кухонные стенки фото

Напряжение на вторичной обмотке трансформатора Т2, выпрямленное диодным мостом VD6, пропорционально потребляемому от сети току. Как только часть этого напряжения, снимаемая с движка переменного резистора R2, превысит порог открывания тринистора VS1, реле К1 сработает и своими контактами К1.1 разомкнет цепь обмотки контактора КМ1, отключая силовой выпрямитель от сети.

Трансформатор Т1 габаритной мощностью не менее 60 Вт должен иметь четыре хорошо изолированных вторичных обмотки на напряжение 12 В Обмотка II — на ток 2 А. обмотки III-V — на 0,7 А. Вместо многообмоточного можно использовать несколько трансформаторов с меньшим числом обмоток.

Магнитопровод трансформатора Т2 — кольцо К28х6х9 из феррита 2000НМ. Его вторичная обмотка содержит 300 витков провода ПЭЛ 0,22, а роль первичной выполняет пропущенный в отверстие кольца провод, идущий к диодному мосту VD7-VD10.

Реле К1 — РЭС22 (РФ4.500.121) можно заменить любым с напряжением срабатывания 12 В и, по крайней мере, одной группой нормально замкнутых контактов. Контактор КМ1 с обмоткой на 220 В выбирают исходя из мощности электродвигателя. Катушки L1 и L2 (рис. 1) — бескаркасные, содержат по 25 витков провода ПЭЛ 1,5, намотанных внавал на оправке диаметром 30 мм.

К деталям и конструкции узлов СК (см. рис. 3) следует отнестись с особым вниманием. Именно эти узлы приносят больше всего неприятностей и материального ущерба в случае выхода из строя. Все детали перед монтажом обязательно должны быть тщательно проверены, а "подозрительные" беспощадно отбракованы. Транзистор VT4 устанавливают на теплоотвод достаточной площади (в авторском варианте — 400 см2). Рядом с ним на том же теплоотводе размещают транзистор VT3, а выводы диода VD7 припаивают непосредственно к выводам транзистора VT4.

Пару транзисторов КТ8110А, КТ8155А можно заменить одним составным МТКД-40-5-3. Он снабжен внутренним защитным диодом, поэтому диод VD7 в случае такой замены не нужен. Близкие по параметрам составные транзисторы МТКД-40-5-2 в данном случае не годятся, так как не имеют внешнего вывода базы второго (мощного) транзистора. Теплоотводящая поверхность транзисторов МТКД-40 5 3 электрически изолирована от полупроводниковой структуры, поэтому транзисторы всех ключей можно установить на общем теплоотводе.

Все силовые цепи должны быть выполнены жесткими, по возможности короткими и прямыми проводами и удалены от цепей ФИУ. Сечение каждого провода должно соответствовать протекающему току. Причем опасно не только занижать, но и завышать диаметр проводов. Цепи VD1L1 и VD2L2 (см. рис. 1) монтируют в непосредственной близости от ключей, припаивая их к выводам соответствующих транзисторов. Если блок силовых ключей не получился компактным, аналогичными защитными цепями желательно снабдить каждую пару СК.

При налаживании источника, прежде всего, с помощью осциллографа проверяют наличие и форму импульсов на выводах микросхем ФИУ Затем, не подавая напряжение на диодный мост VD7-VD10 (см. рис. 4) и не подключая двигатель М1, проверяют, поступают ли импульсы на базы транзисторов VT3 во всех СК.

После этого отключают ФИУ, а на диодный мост подают сетевое напряжение через регулируемый автотрансформатор, постепенно увеличивая его от 0 до 220 В. Двигатель остается не подключенным. Потребляемый С К ток не должен превышать нескольких десятков микроампер. Убедившись в этом, понижают напряжение на выходе автотрансформатора до нуля и, временно заблокировав ШИМ (для этого достаточно разорвать в ФИУ провод, соединяющий выход элемента DD2.2 со входами элементов DD2.3, DD2.4, DD5.1- DD5.4), включают ФИУ. Вновь постепенно увеличивая напряжение, подаваемое на СК, проверяют потребляемый ток. Он станет больше, но даже на максимальной частоте не должен превышать 100 мкА„ Операцию повторяют, разблокировав ШИМ и контролируя осциллографом форму напряжения в точках, предназначенных для подключения обмоток двигателя.

Если все проверки прошли успешно, можно подключить к источнику трехфазный электродвигатель сравнительно небольшой мощности (до 1 кВт) и проверить его работу при уменьшенном напряжении на холостом ходу, а затем — и при номинальных сетевом напряжении и механической нагрузке. Следует постоянно контролировать температуру силовых транзисторов и общий ток, потребляемый от сети. Убедившись в полной работоспособности источника, можно питать от него электродвигатели мощностью до 3,5 кВт.

  1. Дубровский А. Регулятор частоты вращения трехфазных асинхронных двигателей. — Радио, 2001, № 4, с. 42, 43.
  2. Пышкин В. Трехфазный инвертор. — Радио, 2000, № 2. с. 35.
  3. Калугин С. Доработка регулятора частоты вращения трехфазных асинхронных двигателей. — Радио, 2002, № 3, с. 31.
  4. Воронин П. Силовые полупроводниковые ключи. — М.: Додэка, 2001.

Смотрите другие статьи раздела Электродвигатели.

Читайте и пишите полезные комментарии к этой статье.

Простой преобразователь частоты для асинхронного электродвигателя.

Автор: Сергей М.
Опубликовано 11.12.2012
Создано при помощи КотоРед.

Первым был ресторан – зимой холодный воздух должен строго дозировано дуть на разгорячённых посетителей, а летом наоборот –замерзших от холодного мороженого плавно согревать жарким воздухом с улицы. Без инвертора никак не обойтись.
Второй хочет стричь лохматых овец , но вот беда машинка трехфазная. А в поле только одна да и та не 220в. Опять нужен инвертор.
Третий вообще наждачный камень , сверлильный станок и намоточный –захотел прицепить к двигателю.
В конце концов оглядевшись по сторонам я увидел – все…все делают инверторы японцы, французы, немцы …. , только я ещё не имею своего точила для отверток. И мало того все приличные фирмы уже написали , как это делать.

Итак коль уж асинхронный двигатель так распространён и трехфазная система напряжения созданная М. О. Доливо-Добровольским так удобна. А современная элементная база так хороша. То сделать преобразователь частоты –это лишь вопрос личного желания и некоторых финансовых возможностей. Возможно кто то скажет « Ну, зачем мне инвертор , я поставлю фазосдвигающий конденсатор и все решено» . Но при этом обороты не покрутишь и в мощности потеряешь и потом это не интересно.

Возьмём за основу – в быту есть однофазная сеть 220в, народный размер двигателя до 1 кВт. Значить соединяем обмотки двигателя треугольником. Дальше –проще, понадобится драйвер трехфазного моста IR2135(IR2133) выбираем такой потому, что он применяется в промышленной технике имеет вывод SD и удобное расположение выводов. Подойдёт и IR2132 , но у неё dead time больше и выхода SD нет. В качестве генератора PWM выберем микроконтроллер AT90SPWM3B — доступен, всем понятен, имеет массу возможностей и недорого стоит, есть простой программатор -https://real.kiev.ua/avreal/. Силовые транзисторы 6 штук IRG4BC30W выберем с некоторым запасом по току — пусковые токи АД могут превышать номинальные в 5-6 раз. И пока не ставим "тормозной" ключ и резистор, будем тормозить и намагничивать перед пуском ротор постоянным током, но об этом позже . Весь процесс работы отображается на 2-х строчном ЖКИ индикаторе. Для управления достаточно 6 кнопок (частота +, частота -, пуск, стоп, реверс, меню).
Получилась вот такая схема.

Я вовсе не претендую на законченность конструкции и предлагаю брать данную конструкцию за некую основу для энтузиастов домашнего электропривода. Приведённые здесь платы были сделаны под имеющиеся в моём распоряжении детали.

Конструктивно инвертор выполнен на двух платах – силовая часть ( блок питания , драйвер и транзисторы моста , силовые клеммы) и цифровая часть (микроконтроллер + индикатор ). Электрически платы соединены гибким шлейфом. Такая конструкция выбрана для перехода в будущем на контроллер TMS320 или STM32 или STM8.
Блок питания собран по классической схеме и в комментариях не нуждается. Микросхема IL300 линейная опто развязка для управления током 4-20Ма. Оптроны ОС2-4 просто дублируют кнопки «старт, стоп, реверс» для гальванически развязанного управления. Выход оптрона ОС-1 «функция пользователя» (сигнализация и пр.)
Силовые транзисторы и диодный мост закреплены на общий радиатор. Шунт 4 витка манганинового провода диаметром 0.5мм на оправке 3 мм.
Сразу замечу некоторые узлы и элементы вовсе не обязательны. Для того что бы просто крутить двигатель , не нужно внешнее управление током 4-20 Ма. Нет необходимости в трансформаторе тока, для оценочного измерения подойдёт и токовый шунт. Не нужна внешняя сигнализация. При мощности двигателя 400 Вт и площади радиатора 100см 2 нет нужды в термодатчике.

ВАЖНО! – имеющиеся на плате кнопки управления изолированы от сети питания только пластмассовыми толкателями. Для безопасного управления необходимо использовать опторазвязку.

Читайте также:  Узоры для гравировки по дереву

Возможные изменения в схеме в зависимости от микропрограммы.
Усилитель DA-1 можно подключать к трансформатору тока или к шунту. Усилитель DA-1-2 может быть использован для измерения напряжения сети или для измерения сопротивления терморезистора если не используется термодатчик PD-1.
В случае длинных соединительных проводов необходимо на каждый провод хотя бы надеть помехоподавляющие кольцо. Имеют место помехи. Так например –пока я этого не сделал у меня «мышь» зависала.
Так же считаю важным отметить проверку надёжности изоляции АД –т.к. при коммутации силовых транзисторов выбросы напряжение на обмотках могут достигать значений 1,3 Uпит.

Общий вид.

Немного про управление.

Начитавшись книжек с длинными формулами в основном описывающих как делать синусоиду при помощи PWM. И как стабилизировать скорость вращения вала двигателя посредством таходатчика и ПИД регулятора. Я пришёл к выводу –АД имеет достаточно жёсткую характеристику во всём диапазоне допустимых нагрузок на валу.
Поэтому для личных нужд вполне подойдет управление описанное законом Костенко М.П. или как его ещё называют скаляроное. Достаточное для большинства практических случаев применения частотно регулируемого электропривода с диапазоном регулирования частоты вращения двигателя до 1:40. Т.е. грубо говоря мы в самом простом случае делаем обычную 3-х фазную розетку с переменной частотой и напряжением меняющимися в прямой зависимости. С небольшими «но» на начальных участках характеристики необходимо выполнять IR компенсацию т.е. на малых частотах нужно фиксированное напряжение . Втрое «но» в питающие двигатель напряжение замешать 3 гармонику. Всё остальное сделают за нас физические принципы АД. Более подробно про это можно прочесть в документе AVR494.PDF
Основываясь на моих личных наблюдениях и скромном опыте именно эти методы без особых изысков чаще всего применяются в приводах мощностью до 15 кВт.
Далее не буду углубляться в теорию и описание мат моделей АД. Это и без меня достаточно хорошо изложили профессора ещё в 60-х.

Но ни в коем случае не стоит недооценивать сложности управления АД. Все мои упрощения оправданны только некоммерческим применением инвертора.

Плата силовых элементов.

В программе V-1.0 для AT90SPWM3B реализовано
1- Частотное управление АД .Форма напряжения синусоида с 3 гармоникой.
2- Частота задания 5 Гц -50 Гц с шагом 1 Гц. Частота ШИМ 4 кГц.
3- Фиксированное время разгона –торможения
4- Реверс (только через кнопку СТОП)
5- Разгон до заданной частоты с шагом 1 Гц
6 – Индикация показаний канала АЦП 6 (разрядность 8 бит., оконный фильтр апертура 4 бита)
я использую этот канал для замера тока шунта.
7 – Индикация режима работы START,STOP,RUN,RAMP, и Частота в Гц.
8- Обработка сигнала авария от мс IR2135

Торможение двигателя принудительное – без выбега. При этом нужно помнить – если на валу будет висеть огромный вентилятор или маховик то напряжение на звене постоянного тока может достичь опасных значений. Но я думаю вертолёты с приводом от АД строить никто не будет

Функции микропрограммы в будущих версиях

1 -намагничивание ротора перед пуском
2- торможение постоянным током
3 –прямой реверс
4 – частота задания 1 -400 Гц.
5 – ограничение, контроль тока двигателя.
6 — переключаемые зависимости U/F
7 – контроль звена постоянного тока.
8 – некоторые макросы управления –это вообще в далёких планах.

Испытания.
Данная конструкции была проверена с двигателем 0.18кВт и 0.4 кВт и 0.8 кВт. Все двигатели остались довольны.
Только при малых оборотах и долговременной работе необходимо принудительное охлаждение АД.

Строка для программатора
av_28r4.exe -aft2232 -az +90pwm3b -e -w -v -fckdiv=1,psc2rb=0,psc1rb=0,psc0rb=0,pscrv=0,bodlevel=5 -c01.hex

Бесплатная техническая библиотека:
▪ Все статьи А-Я
▪ Энциклопедия радиоэлектроники и электротехники
▪ Новости науки и техники
▪ Журналы, книги, сборники
▪ Архив статей и поиск
▪ Схемы, сервис-мануалы
▪ Электронные справочники
▪ Инструкции по эксплуатации
▪ Голосования
▪ Ваши истории из жизни
▪ На досуге
▪ Случайные статьи
▪ Отзывы о сайте

Справочник:
▪ Большая энциклопедия для детей и взрослых
▪ Биографии великих ученых
▪ Важнейшие научные открытия
▪ Детская научная лаборатория
▪ Должностные инструкции
▪ Домашняя мастерская
▪ Жизнь замечательных физиков
▪ Заводские технологии на дому
▪ Загадки, ребусы, вопросы с подвохом
▪ Инструменты и механизмы для сельского хозяйства
▪ Искусство аудио
▪ Искусство видео
▪ История техники, технологии, предметов вокруг нас
▪ И тут появился изобретатель (ТРИЗ)
▪ Конспекты лекций, шпаргалки
▪ Крылатые слова, фразеологизмы
▪ Личный транспорт: наземный, водный, воздушный
▪ Любителям путешествовать — советы туристу
▪ Моделирование
▪ Нормативная документация по охране труда
▪ Опыты по физике
▪ Опыты по химии
▪ Основы безопасной жизнедеятельности (ОБЖД)
▪ Основы первой медицинской помощи (ОПМП)
▪ Охрана труда
▪ Радиоэлектроника и электротехника
▪ Строителю, домашнему мастеру
▪ Типовые инструкции по охране труда (ТОИ)
▪ Чудеса природы
▪ Шпионские штучки
▪ Электрик в доме
▪ Эффектные фокусы и их разгадки

Техническая документация:
▪ Схемы и сервис-мануалы
▪ Книги, журналы, сборники
▪ Справочники
▪ Параметры радиодеталей
▪ Прошивки
▪ Инструкции по эксплуатации
▪ Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(150000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
▪ Ваши истории
▪ Загадки для взрослых и детей
▪ Знаете ли Вы, что.
▪ Зрительные иллюзии
▪ Веселые задачки
▪ Каталог Вивасан
▪ Палиндромы
▪ Сборка кубика Рубика
▪ Форумы
▪ Карта сайта

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

При использовании материалов сайта обязательна ссылка на http://www.diagram.com.ua


сделано в Украине

Источник питания трехфазного электродвигателя от однофазной сети с регулировкой частоты вращения

Асинхронные электродвигатели (в том числе трехфазные) находят широкое применение в быту и на производстве для привода машин и механизмов, скорость работы которых постоянна или изменяется с помощью редукторов с переменным передаточным числом и других механических приспособлений. Там, где необходимо плавно регулировать частоту вращения вала, предпочтение отдают, как правило, более дорогим и менее надежным коллекторным электродвигателям, у которых эту операцию выполнить просто — достаточно изменять напряжение питания или ток в обмотке возбуждения. Чтобы управлять частотой вращения вала асинхронного двигателя, приходится изменять не только напряжение, но и частоту переменного тока в его обмотках. Автор предлагаемой статьи рассказывает о своем решении этой задачи. Разработанное им устройство позволяет питать от однофазной сети асинхронный трехфазный двигатель мощностью до 3,5 кВт и изменять частоту его вращения более чем в 10 раз.

Нередко возникает необходимость плавно изменять скорость работы машин и механизмов, снабженных электроприводом. Обычно применяемые в таких случаях коллекторные электродвигатели дороги, требуют периодического обслуживания и уступают асинхронным в надежности, сроке службы и массогабаритных показателях.

Промышленность выпускает устройства частотного регулирования скорости вращения асинхронных двигателей.

Эти приборы сложны и дороги, поэтому применяют их лишь в ответственных случаях, например, в приводах станков с ЧПУ. Схемы подобных регуляторов для самостоятельного изготовления были опубликованы и в журнале "Радио" [1, 2]. К сожалению, рассчитаны они на двигатели очень небольшой мощности

Основная проблема, возникающая при разработке частотного регулятора, состоит в необходимости изменять вместе с частотой и эффективное значение подаваемого на обмотки двигателя напряжения. Дело в том, что со снижением частоты переменного тока уменьшается индуктивное сопротивление обмотки, что приводит к недопустимому возрастанию протекающего по ней тока. Чтобы избежать перегрева обмотки и насыщения магнитопровода статора, необходимо снижать напряжение питания двигателя.

Один из способов сделать это, рекомендованный в [3], состоит в подключении двигателя через регулируемый автотрансформатор, подвижный контакт которого механически связан с регулятором частоты. Способ, нужно сказать, весьма неудобный, так как масса и размеры автотрансформатора сравнимы с аналогичными показателями самого двигателя, а надежность подвижного контакта при передаче большой мощности вызывает сомнения. Гораздо удобнее изменять эффективное значение напряжения с помощью широтноимпульсной модуляции (ШИМ) [4]. В основе предлагаемого регулируемого источника питания асинхронного трехфазного электродвигателя лежит именно такой метод.

Источник построен по схеме, изображенной на рис. 1.

Мощный выпрямитель, входящий в состав блока питания и защиты БПЗ, преобразует однофазное переменное напряжение 220 В 50 Гц в постоянное 300 В. С помощью трех сдвоенных силовых ключей СК1 — СКЗ коммутируют обмотки трехфазного электродвигателя М1, подключая их в нужных очередности и полярности к выходу выпрямителя. Цепи VD1L1 и VD2L2 защищают ключи от бросков тока нагрузки.

Читайте также:  Вылетел замок из молнии как вставить

Импульсы, управляющие ключами, генерируют блок ФИУ — формирователь управляющих импульсов. В БПЗ имеются еще несколько маломощных выпрямителей для питания ФИУ и СК, а также узел токовой защиты, отключающий устройство от сети при превышении допустимого значения потребляемого тока.

Схема ФИУ показана на рис. 2.


(нажмите для увеличения)

На микросхеме DD1 выполнен генератор тактовых импульсов. Их частоту регулируют переменным резистором R4.1 от 30 до 400 Гц. Частота импульсов на выходах микросхем DD4 и DD5 в шесть раз ниже — от 5 до 66,7 Гц. Ток именно такой частоты потечет в обмотках двигателя М1 (см. рис. 1), задавая частоту вращения его вала. Уменьшать частоту ниже указанного предела не стоит, станет заметной неравномерность вращения вала. А при частоте выше номинальной (50 Гц) резко падает момент на валу двигателя.

Цепи R5VD3C3-R10VD8C8 задерживают фронты управляющих импульсов, оставляя их спады незадержанными. Это необходимо, чтобы выходные транзисторы ключей, составляющих пару (например, СК1.1 и СК1.2), даже на очень короткое время не оказались открытыми одновременно, что было бы равносильно короткому замыканию источника постоянного напряжения 300 В и привело бы в лучшем случае к перегреву, а в худшем — к выходу из строя этих транзисторов, а с ними и других элементов СК.

На входы логических элементов DD6.1-DD6.4, DD2.3, DD2.4, кроме импульсов частотой 5. 66,7 Гц, поступают более высокочастотные импульсы регулируемой скважности от генератора на элементах DD2.1, DD2.2. Переменные резисторы R4.1 и R4.2 спарены, поэтому на выходах перечисленных выше элементов одновременно с изменением частоты повторения пачек изменяется скважность заполняющих эти пачки импульсов.

Резисторы R2 и R3 подобраны таким образом, что при номинальных или повышенных оборотах на двигатель поступает практически полное напряжение, а с их уменьшением оно снижается приблизительно в два раза. В результате при пониженной в десять раз частоте ток, потребляемый электродвигателем, лишь незначительно превышает номинальный.

Инверторы DD7.1-DD7.6 с повышенной нагрузочной способностью служат буферными элементами. В их выходные цепи включены светодиоды оптронов, установленных в ключах СК1-СКЗ и обеспечивающих гальваническую развязку между цепями управления и силовыми узлами источника.

Схема СК представлена на рис. 3. Всего таких ключей шесть (по два на каждую фазу). В интервалы времени, когда через светодиод оптрона U1 ток не течет, вследствие чего его фотодиод имеет высокое сопротивление, транзисторы VT1 и VT2 открыты, VT3 и VT4 закрыты — ключ разомкнут. При протекании тока через светодиод ключ замкнут. Элементы VD3-VD6, R3 и С1 обеспечивают форсированное закрывание транзистора VT4, что снижает потери энергии и облегчает тепловой режим ключа.

Диод VD7 защищает транзистор VT4 от выбросов напряжения на индуктивной нагрузке. Подробнее узнать об устройстве силовых ключей и способах их защиты можно в книге [4]. До знакомства с ней автор сжег немало дорогих транзисторов большой мощности.

Схема БПЗ показана на рис. 4.

Ко вторичным обмоткам трансформатора Т1 подключены четыре выпрямителя. Первый из них, на диодном мосте VD1, служит для питания узлов управления ключей СК1.2-СКЗ.2. От него же через стабилизатор на транзисторе VT1 питают микросхемы ФИУ. Для питания узлов управления ключей СК1.1 — СК3.1, находящихся под высоким потенциалом, служат три изолированных выпрямителя на диодных мостах VD2- VD4.

Силовой выпрямитель собран на диодах VD7-VD10 и снабжен сглаживающим фильтром C7L1C8. Нажатием на кнопку SB2 замыкают цепь обмотки контактора КМ1. Сработавший контактор остается в таком состоянии благодаря замкнувшимся контактам КМ1.2. Напряжение 220 В, 50 Гц поступает на диодный мост VD7-VD10 через замкнувшиеся контакты КМ 1.1 и первичную обмотку трансформатора тока Т2 Вы ключают контактор и электродвигатель М1 (см. рис. 1) нажатием на кнопку SB1.

Напряжение на вторичной обмотке трансформатора Т2, выпрямленное диодным мостом VD6, пропорционально потребляемому от сети току. Как только часть этого напряжения, снимаемая с движка переменного резистора R2, превысит порог открывания тринистора VS1, реле К1 сработает и своими контактами К1.1 разомкнет цепь обмотки контактора КМ1, отключая силовой выпрямитель от сети.

Трансформатор Т1 габаритной мощностью не менее 60 Вт должен иметь четыре хорошо изолированных вторичных обмотки на напряжение 12 В Обмотка II — на ток 2 А. обмотки III-V — на 0,7 А. Вместо многообмоточного можно использовать несколько трансформаторов с меньшим числом обмоток.

Магнитопровод трансформатора Т2 — кольцо К28х6х9 из феррита 2000НМ. Его вторичная обмотка содержит 300 витков провода ПЭЛ 0,22, а роль первичной выполняет пропущенный в отверстие кольца провод, идущий к диодному мосту VD7-VD10.

Реле К1 — РЭС22 (РФ4.500.121) можно заменить любым с напряжением срабатывания 12 В и, по крайней мере, одной группой нормально замкнутых контактов. Контактор КМ1 с обмоткой на 220 В выбирают исходя из мощности электродвигателя. Катушки L1 и L2 (рис. 1) — бескаркасные, содержат по 25 витков провода ПЭЛ 1,5, намотанных внавал на оправке диаметром 30 мм.

К деталям и конструкции узлов СК (см. рис. 3) следует отнестись с особым вниманием. Именно эти узлы приносят больше всего неприятностей и материального ущерба в случае выхода из строя. Все детали перед монтажом обязательно должны быть тщательно проверены, а "подозрительные" беспощадно отбракованы. Транзистор VT4 устанавливают на теплоотвод достаточной площади (в авторском варианте — 400 см2). Рядом с ним на том же теплоотводе размещают транзистор VT3, а выводы диода VD7 припаивают непосредственно к выводам транзистора VT4.

Пару транзисторов КТ8110А, КТ8155А можно заменить одним составным МТКД-40-5-3. Он снабжен внутренним защитным диодом, поэтому диод VD7 в случае такой замены не нужен. Близкие по параметрам составные транзисторы МТКД-40-5-2 в данном случае не годятся, так как не имеют внешнего вывода базы второго (мощного) транзистора. Теплоотводящая поверхность транзисторов МТКД-40 5 3 электрически изолирована от полупроводниковой структуры, поэтому транзисторы всех ключей можно установить на общем теплоотводе.

Все силовые цепи должны быть выполнены жесткими, по возможности короткими и прямыми проводами и удалены от цепей ФИУ. Сечение каждого провода должно соответствовать протекающему току. Причем опасно не только занижать, но и завышать диаметр проводов. Цепи VD1L1 и VD2L2 (см. рис. 1) монтируют в непосредственной близости от ключей, припаивая их к выводам соответствующих транзисторов. Если блок силовых ключей не получился компактным, аналогичными защитными цепями желательно снабдить каждую пару СК.

При налаживании источника, прежде всего, с помощью осциллографа проверяют наличие и форму импульсов на выводах микросхем ФИУ Затем, не подавая напряжение на диодный мост VD7-VD10 (см. рис. 4) и не подключая двигатель М1, проверяют, поступают ли импульсы на базы транзисторов VT3 во всех СК.

После этого отключают ФИУ, а на диодный мост подают сетевое напряжение через регулируемый автотрансформатор, постепенно увеличивая его от 0 до 220 В. Двигатель остается не подключенным. Потребляемый С К ток не должен превышать нескольких десятков микроампер. Убедившись в этом, понижают напряжение на выходе автотрансформатора до нуля и, временно заблокировав ШИМ (для этого достаточно разорвать в ФИУ провод, соединяющий выход элемента DD2.2 со входами элементов DD2.3, DD2.4, DD5.1- DD5.4), включают ФИУ. Вновь постепенно увеличивая напряжение, подаваемое на СК, проверяют потребляемый ток. Он станет больше, но даже на максимальной частоте не должен превышать 100 мкА„ Операцию повторяют, разблокировав ШИМ и контролируя осциллографом форму напряжения в точках, предназначенных для подключения обмоток двигателя.

Если все проверки прошли успешно, можно подключить к источнику трехфазный электродвигатель сравнительно небольшой мощности (до 1 кВт) и проверить его работу при уменьшенном напряжении на холостом ходу, а затем — и при номинальных сетевом напряжении и механической нагрузке. Следует постоянно контролировать температуру силовых транзисторов и общий ток, потребляемый от сети. Убедившись в полной работоспособности источника, можно питать от него электродвигатели мощностью до 3,5 кВт.

  1. Дубровский А. Регулятор частоты вращения трехфазных асинхронных двигателей. — Радио, 2001, № 4, с. 42, 43.
  2. Пышкин В. Трехфазный инвертор. — Радио, 2000, № 2. с. 35.
  3. Калугин С. Доработка регулятора частоты вращения трехфазных асинхронных двигателей. — Радио, 2002, № 3, с. 31.
  4. Воронин П. Силовые полупроводниковые ключи. — М.: Додэка, 2001.

Смотрите другие статьи раздела Электродвигатели.

Читайте и пишите полезные комментарии к этой статье.

Ссылка на основную публикацию
Элемент в аккумулятор шуруповерта
0 ОТДЕЛ ТОВАРОВ ДЛЯ НОУТБУКОВ ОТДЕЛ ТОВАРОВ ДЛЯ НОУТБУКОВ ОТДЕЛ ТОВАРОВ ДЛЯ НОУТБУКОВ ОТДЕЛ ТОВАРОВ ДЛЯ НОУТБУКОВ ОТДЕЛ ТОВАРОВ ДЛЯ...
Электрические клипсы для проводов
Электротехнические работы, связанные с электрическими сетями, неизбежно сопровождаются исполнением монтажа, техобслуживания, ремонта. В свою очередь перечисленный сервис заставляет использовать зажимы...
Электрические обогреватели для дачи энергосберегающие
*Обзор лучших по мнению редакции expertology.ru. О критериях отбора. Данный материал носит субъективный характер, не является рекламой и не служит...
Элементарные технические знания об электроустановке
1. Элементарные технические знания об электроустановке и ее оборудовании 1.1. Термины Электроустановка - совокупность машин, аппаратов, линий и вспомогательного оборудования...
Adblock detector