Эффект обратной петли в физике

Эффект обратной петли в физике

В данной статье мы рассмотрим явление под названием магнитный гистерезис, которое связано со свойствами намагничивания материала, благодаря которому он сначала намагничивается, а затем размагничивается. Рассмотрим кривые намагничивания, сохраняемость, а так же магнитную петлю гистерезиса.

Описание явления магнитного гистерезиса

Мы знаем, что магнитный поток, создаваемый электромагнитной катушкой, представляет собой величину магнитного поля или силовых линий, создаваемых в данной области, и что его чаще называют «плотностью потока», обозначенным символ B с единицей измерения Тесла, Т.

Мы также знаем из предыдущих уроков, что магнитная сила электромагнита зависит от числа витков катушки, тока, протекающего через катушку, или от типа используемого материала сердечника, и если мы увеличим либо ток, либо число оказывается, мы можем увеличить напряженность магнитного поля H.

Ранее относительная проницаемость, символ µ r, определялась как отношение абсолютной проницаемости µ и проницаемости свободного пространства µ o(вакуум), и это задавалось как постоянная величина. Однако взаимосвязь между плотностью потока B и напряженностью магнитного поля H может быть определена тем фактом, что относительная проницаемость µ r не является постоянной величиной, а функцией интенсивности магнитного поля, что дает плотность магнитного потока как: B = M H .

Тогда плотность магнитного потока в материале будет увеличена в большей степени в результате его относительной проницаемости для материала по сравнению с плотностью магнитного потока в вакууме, µ o H, а для катушки с воздушной сердцевиной это соотношение определяется как:

Таким образом, для ферромагнитных материалов отношение плотности потока к напряженности поля ( B / H ) не является постоянным, а изменяется в зависимости от плотности потока. Тем не менее, для катушек с воздушной сердцевиной или любой сердцевины с немагнитной средой, такой как дерево или пластмасса, это отношение можно считать постоянной величиной, и эта постоянная известна как μ o , проницаемость свободного пространства ( μ o = 4.π.10 -7 ч / м ).

Построив значения плотности потока ( B ) против напряженности поля, ( Н ) мы можем произвести набор кривых , называемых Кривые намагничивания, кривые магнитного гистерезиса или более обычно BH кривые для каждого типа основного используемого материала.

Намагниченность или кривая B-H

Набор кривых намагничивания выше, представляет пример взаимосвязи между B и H для сердечников из мягкого железа и стали, но каждый тип материала сердечника будет иметь свой собственный набор кривых магнитного гистерезиса. Вы можете заметить, что плотность потока увеличивается пропорционально напряженности поля до тех пор, пока она не достигнет определенного значения, если оно больше не может становиться почти равным и постоянным, поскольку напряженность поля продолжает увеличиваться.

Это связано с тем, что существует ограничение на количество плотности потока, которое может генерироваться ядром, поскольку все домены в железе идеально выровнены. Любое дальнейшее увеличение не будет влиять на значение M , и точка на графике, где плотность потока достигает своего предела, называется магнитным насыщением, также известным как насыщение сердечника, и в нашем простом примере выше точки насыщения стальной кривой начинается примерно с 3000 ампер-витков на метр.

Насыщение происходит потому, что, как мы помним из предыдущей статьи по магнетизму, который включал теорию Вебера, случайное расположение структуры молекулы в материале ядра изменяется, когда крошечные молекулярные магниты в материале становятся «выстроенными».

По мере увеличения напряженности магнитного поля ( H ) эти молекулярные магниты становятся все более и более выровненными, пока они не достигнут идеального выравнивания, создавая максимальную плотность потока, и любое увеличение напряженности магнитного поля из-за увеличения электрического тока, протекающего через катушку, будет иметь мало или вообще не будет иметь эффекта.

Сохраняемость (способность сохранять остаточный магнетизм)

Предположим, что у нас есть электромагнитная катушка с высокой напряженностью поля из-за тока, протекающего через нее, и что материал ферромагнитного сердечника достиг своей точки насыщения, максимальной плотности потока. Если мы теперь откроем переключатель и удалим ток намагничивания, протекающий через катушку, мы ожидаем, что магнитное поле вокруг катушки исчезнет, ​​когда магнитный поток уменьшится до нуля.

Однако магнитный поток не исчезает полностью, поскольку материал электромагнитного сердечника все еще сохраняет часть своего магнетизма, даже когда ток прекращает течь в катушке. Эта способность к катушке, чтобы сохранить часть своего магнетизма внутри сердечника после процесса намагничивания остановилось называются сохраняемость или остаточной намагниченности, в то время как величина плотности потока все еще остается в ядре, называется остаточным магнетизмом B R .

Причиной этого является то, что некоторые из крошечных молекулярных магнитов не возвращаются к совершенно случайному образцу и все же указывают в направлении исходного поля намагничивания, давая им своего рода «память». Некоторые ферромагнитные материалы обладают высокой удельной удерживаемостью (магнитной твердостью), что делает их превосходными для изготовления постоянных магнитов.

В то время как другие ферромагнитные материалы имеют низкую способность удерживать (магнитно-мягкие), что делает их идеальными для использования в электромагнитах, соленоидах или реле. Один из способов уменьшить эту остаточную плотность потока до нуля — изменить направление тока, протекающего через катушку, путем изменения значения H, напряженности магнитного поля, отрицательной. Этот эффект называется коэрцитивной силой H C .

Если этот обратный ток увеличивается еще больше, то плотность потока будет также увеличиваться в обратном направлении, пока ферромагнитный сердечник не достигнет насыщения снова, но в обратном направлении от предыдущего. Снижая ток намагничивания I снова до нуля создаст аналогичную величину остаточного магнетизма, но в обратном направлении.

Затем путем постоянного изменения направления тока намагничивания через катушку с положительного направления на отрицательное направление, как в случае с источником переменного тока, можно создать петлю магнитного гистерезиса ферромагнитного сердечника.

Магнитная петля гистерезиса

Магнитная петля гистерезиса выше, показывает поведение ферромагнитного сердечника графически в виде соотношения между B и H является нелинейным. Начиная с немагнитного сердечника, и B, и H будут в нуле, точка 0 на кривой намагничивания.

Если ток намагничивания I увеличивается в положительном направлении до некоторого значения, напряженность магнитного поля H линейно увеличивается с I,и плотность потока B также будет увеличиваться, как показано кривой из точки 0 в точку a, когда она движется к насыщению.

Теперь, если ток намагничивания в катушке уменьшается до нуля, магнитное поле, циркулирующее вокруг сердечника, также уменьшается до нуля. Однако магнитный поток катушек не достигнет нуля из-за остаточного магнетизма, присутствующего в сердечнике, и это показано на кривой от точки а к точке b .

Чтобы уменьшить плотность потока в точке b до нуля, необходимо обратить ток, протекающий через катушку. Сила намагничивания, которая должна применяться для обнуления остаточной плотности потока, называется «Коэрцитивной силой». Эта коэрцитивная сила меняет магнитное поле, перестраивая молекулярные магниты, пока ядро ​​не станет немагнитным в точке с .

Читайте также:  Станки hammer c3 31 цена

Увеличение этого обратного тока вызывает намагничивание сердечника в противоположном направлении, и дальнейшее увеличение этого тока намагничивания приведет к тому, что сердечник достигнет своей точки насыщения, но в противоположном направлении, точки d на кривой.

Эта точка симметрична точке b . Если ток намагничивания снова уменьшится до нуля, остаточный намагниченность, присутствующая в сердечнике, будет равна предыдущему значению, но в точке е будет обратной .

Снова изменение направления тока намагничивания, протекающего через катушку на этот раз в положительном направлении, приведет к тому, что магнитный поток достигнет нуля, точка f на кривой, и, как и прежде, дальнейшее увеличение тока намагничивания в положительном направлении приведет к насыщению сердечника в точке а .

Затем кривая B-H следует по пути a-b-c-d-e-f-a, когда ток намагничивания, протекающий через катушку, чередуется между положительным и отрицательным значением, таким как цикл переменного напряжения. Этот путь называется магнитной петлей гистерезиса.

Эффект магнитного гистерезиса показывает, что процесс намагничивания ферромагнитного сердечника и, следовательно, плотность потока зависят от того, на какую часть кривой намагничивается ферромагнитный сердечник, поскольку это зависит от прошлых цепей, придающих сердечнику форму «памяти». Тогда ферромагнитные материалы имеют память, потому что они остаются намагниченными после того, как внешнее магнитное поле было удалено.

Однако мягкие ферромагнитные материалы, такие как железная или кремниевая сталь, имеют очень узкие петли магнитного гистерезиса, что приводит к очень небольшим количествам остаточного магнетизма, что делает их идеальными для использования в реле, соленоидах и трансформаторах, поскольку они могут легко намагничиваться и размагничиваться.

Поскольку для преодоления этого остаточного магнетизма необходимо применять коэрцитивную силу, необходимо выполнить работу по замыканию петли гистерезиса, чтобы используемая энергия рассеивалась в виде тепла в магнитном материале. Это тепло известно как потеря гистерезиса, величина потери зависит от значения материала коэрцитивной силы.

Добавляя добавки к металлическому железу, такие как кремний, можно получить материалы с очень малой коэрцитивной силой, которые имеют очень узкую петлю гистерезиса. Материалы с узкими петлями гистерезиса легко намагничиваются и размагничиваются и известны как магнитомягкие материалы.

Магнитные петли гистерезиса для мягких и твердых материалов

Магнитный гистерезис приводит к рассеиванию потраченной энергии в виде тепла, причем энергия теряется пропорционально площади петли магнитного гистерезиса. Потери гистерезиса всегда будут проблемой в трансформаторах переменного тока, где ток постоянно меняет направление, и, таким образом, магнитные полюсы в сердечнике будут вызывать потери, потому что они постоянно меняют направление.

Вращающиеся катушки в машинах постоянного тока также будут нести гистерезисные потери, поскольку они попеременно проходят севернее южных магнитных полюсов. Как указывалось ранее, форма петли гистерезиса зависит от природы используемого железа или стали, и в случае железа, которое подвергается массивным изменениям магнетизма, например, сердечники трансформатора, важно, чтобы петля гистерезиса B-H была как можно меньше.

В следующей статье об электромагнетизме мы рассмотрим закон электромагнитной индукции Фарадея и увидим, что, перемещая проводной проводник в стационарном магнитном поле, можно вызвать электрический ток в проводнике, образующий простой генератор.

Петля обратной связи (feedback loop) – совокупность взаимосвязанных логических причинно-следственных отношений, которые вызывают усиление (положительная ОС) или ослабление (отрицательная ОС) условий или поведения в рамках системы.

Применение: в отличие от традиционного определения обратной связи, где положительная обратная связь создает самоусиливающий эффект, а отрицательная обратная связь – самокорректирующий (балансировочный) эффект, ТОС определяет, что петля обратной связи может быть только усиливающей (положительной или отрицательной, в зависимости от первоначального импульса). Обычно, отрицательные усиливающие петли представлены только в тех системах, где есть какие-либо проблемы, и они ухудшаются, тогда как положительные усиливающие петли присущи в хорошо работающих системах, и они улучшаются. В общем, обратная связь включает в себя как передачу, так и возврат информации. Т.к. петли обратной связи действуют во всех реально существующих системах, важно активно искать и добавлять их в деревья текущей и будущей реальности, как для правильной диагностики, так и для улучшений. Логические объекты в петле обратной связи – хорошие кандидаты в качестве точек приложения усилий.

Иллюстрация:Ниже приведен пример отрицательной обратной связи. Если (10) Мы сократим количество переналадок для повышения эффективности, тогда (20) Мы будем иметь дело с более крупными партиями и группировать похожие детали друг с другом. Если (20) Мы будем иметь дело с более крупными партиями и группировать похожие детали друг с другом, тогда (30) Мы будем запускать в работу материалы, в которых пока не нуждаемся. И если (30) Мы будем запускать материалы, в которых пока не нуждаемся, то (40) Мы снизим защитную мощность станка. Мы имеем причинно-следственную петлю между объектами 40 и 20, т.к. снижение защитной мощности вынуждает нас выпускать партии большего размера.

4 комментариев “ Петля обратной связи ”

Петля обратной связи – взаимосвязнный набор логических причинно-следственных отношений, который продуцирует возрастающее (положительная) или уменьшающееся (негативная) условие или поведение внутри системы.
Применение: в отличие от принятого определения обратной связи, в котором положительная обратная связь самоусиливает результаты, а отрицательная – создаёт самокорректирующий или балансирующий эффект, ТОС определяет обратную связь только как усиливающую, положительную или отрицательную, в зависимости от исходного стимула. Обычно, отрицательные усиливающие петли присутствуют в системе с проблемами, тогда как положительные усиливающие петли активны в хорошо работающих системах. В общем случае, обратная связь включает и передачу, и возврат информации. Поскольку петли обратной связи существуют во всех реальных системах, важно активно искать их для включения в каждую диаграмму ДТР и ДБР.

Комментарий мой, ГЛ: основная ошибка, вызвавшая недоумение – перевод слова definition, как “понимание”, а это “определение”, что, на самом деле, видно из исходного определения.
При разворачивании логических инструментов ТОС исходной посылкой для действия – анализа – является расхождение между “как должно (желательно) быть”, to be, и как есть, as is, причём на уровне Цели и Необходимых условий. Когда найдена причина этого (этих) расхождения, возможно, что найдётся петля усиливающей обратной связи, которая в данном случае называется “отрицательной”, поскольку ухудшает условие или поведение: причина – расхождение (НЖЯ) – причина -дальнейшее расхождение – …, которая постепенно ухудшает ситуацию. Она не может быть ослабляющей, поскольку тогда не существовалобы расхождения. Найдя разрешение конфликта, мы вводим новую причину. Здорово, если можно ввести петлю обратной связи, усиливающую положительный эффект – положительную усиливающую петлю обратной связи.
ТО есть, ПО ОПРЕДЕЛЕНИЮ, в ТОС рассматриваются усиливающие эффект петли обратной связи, положительные или отрицательные по своему влиянию на расхождение, НЖЯ.

Читайте также:  Экостиль в интерьере спальни

Мне кажется, что проблема пренебрежения с-д моделированием проявляется или нет в зависимости от характеных времён срабатывания неучтённых при анализе прочих петель связей. Но думаю, что это тема неподъёмная для нормальной дискуссии без наличия добротных примеров, подтверждающих или опровергающих то или иное мнение. Впрочем, я, кажется, уже заехал в тематику форума на leanzone.

Евгений, что касается английского текста, то он скопирован из словаря терминов TOCICO – Международной сертифицирующей организации по ТОС, и, по сему, является легитимным в рамках ТОС. То есть, ты прав в том смысле, что когда термин трактуется не в каноническом смысле, то лучше это оговаривать.

Георгий, спасибо за перевод! Принципиальные моменты в статье исправил.

Внесены небольшие изменения, согласно новой редакции словаря терминов ТОС.

Давайте обсудим. Отменить ответ

Популярное

Мы в соцсетях

Подписка на рассылку

Наша рассылка для руководителей «Управляй будущим» выходит один раз в неделю по средам

Обратная связь. Петля обратной связи и саморегулирование. Концепция Норберта Винера. Кибернетика и социум.

Современные кибернетические устройства, машины и аппараты значительно отличаются от заводных механизмов Декарта. Критическая разница заключается в наличии систем автоматического управления (САУ), основанных на концепции обратной связи, разработанной Норбертом Винером.

По концепции Винера, петля обратной связи представляет собой кольцевую систему причинно связанных элементов, в которой изначальное воздействие распространяется вдоль узлов петли так, что каждый элемент оказывает влияние на последующий, пока последний из них не «принесет сообщение» первому элементу петли.

Следствием такой организации является то, что первое звено («вход») подвергается влиянию последнего («выхода»). Это и позволяет осуществлять саморегулирование всей системы, поскольку изначальное влияние модифицируется каждый раз, когда оно обходит всю петлю. Обратная связь, по словам Винера, представляет собой «управление машиной на основе ее реального, а не ожидаемого поведения».

В более широком смысле, обратная связь стала означать передачу информации о результате любого процесса или любой деятельности к их первоисточнику.

Для наглядности принципов работы петли обратной связи, Винер приводил пример с рулевым, — один из простейших примеров петли обратной связи. Когда лодка отклоняется от установленного курса, скажем вправо, рулевой оценивает отклонение, а затем осуществляет противодействие, поворачивая руль влево. Это уменьшает отклонение лодки и даже может привести к переходу через нужное направление и отклонению влево. В некоторый момент, в ходе движения, рулевой производит новую оценку отклонения лодки, осуществляет новое противодействие, снова оценивает отклонение и так далее. Таким образом, поддерживая курс лодки, он полагается на постоянную обратную связь, причем реальная траектория лодки все время колеблется относительно установленного направления. Мастерство управления лодкой состоит в том, чтобы сделать эти колебания как можно менее заметными.

Похожий механизм обратной связи работает, когда мы учимся ездить на велосипеде. Сначала, когда мы только обучаемся езде, нам бывает трудно отслеживать обратную связь из-за постоянных изменений равновесия. Соответственно, нам трудно и управлять велосипедом. Так как, переднее колесо у новичка, как правило, сильно рыскает. Но по мере роста мастерства мозг начинает быстрее отслеживать, оценивать, и точнее реагировать на движения велосипеда и наших рук, эффективная обратная связь уменьшает колебания переднего колеса, и велосипед движется по нужной траектории, сохраняя требуемое равновесие.

Нам известно, что саморегулирующиеся машины, содержащие петли обратной связи, существовали задолго до появления кибернетики.

Например, центробежный регулятор парового двигателя, изобретенный Джеймсом Уаттом в конце восемнадцатого столетия, является классическим примером, а первые термостаты были изобретены еще раньше.

Первое внятное и подробное обсуждение петель обратной связи появилось в статье Норберта Винера, Джулиана Бигелоу и Артуро Розенблюта, опубликованной в 1943 году и озаглавленной «Поведение, цель и телеология». В этой новаторской работе авторы не только представили идею круговой причинности как логического паттерна, лежащего в основе технической концепции обратной связи, но также впервые применили ее к модели поведения живых организмов.

Занимая строгую бихевиористскую позицию, авторы утверждали, что поведение любой машины или организма, характеризующееся саморегулированием через обратную связь, может быть названо «целенаправленным», поскольку такое поведение преследует некую цель. Они иллюстрировали свою модель целенаправленного поведения многочисленными примерами — кошка ловит мышь; собака берет след; человек берет стакан со стола и т. д. — и проанализировали эти примеры на языке заложенных в них круговых паттернов обратной связи.

Норберт Винер и его коллеги считали обратную связь существенным механизмом гомеостаза — саморегулирования, которое позволяет живым организмам поддерживать себя в состоянии динамического равновесия.

Хотя Уолтер Кэннон на десять лет раньше в известной книге «Мудрость тела» ввел понятие гомеостаза, и дал также подробное описание многих саморегулирующихся метаболических процессов. Однако он так и не определил в явном виде замкнутые причинные петли, содержащиеся в них.

Обратная связь и петля обратной связи. Концепция Норберта Винера.

Таким образом, концепция обратной связи, введенная кибернетиками, привела к новому пониманию многих присущих жизни саморегулирующихся процессов. Сегодня мы понимаем, что петли обратной связи повсеместно встречаются в живом мире, поскольку они являются неотъемлемой частью нелинейных сетей, характерных для живых систем.

Положительная и отрицательная обратная связь.

Кибернетики различают два типа обратной связи — уравновешивающую (или отрицательную) и усиливающую (или положительную) обратную связь.

Поскольку специальные значения «отрицательного» и «положительного» в этом контексте могут легко ввести в заблуждение, следует объяснить их более подробно.

Причинное звено и влияние определяется как положительное, если изменение в А (на входе) приводит к изменению того же направления в Б (на выходе): увеличение А влечет за собой увеличение Б, а уменьшение А приводит к уменьшению Б.

Читайте также:  Монтаж лестниц из камня

Причинное звено определяется как отрицательное, если изменение Б происходит в противоположном направлении, т. е. Б уменьшается, когда А увеличивается, и увеличивается, когда А уменьшается.

Следует помнить, что значки «+» и «-» означают не увеличение или уменьшение, а относительное направление изменения связанных элементов: «+» означает одинаковое направление, а «-» противоположное.

Причина, по которой значки «+» и «-» оказались столь удобными, заключается в том, что они дают очень простое правило определения общего характера петли обратной связи. Она будет самобалансирующейся (отрицательной), если содержит нечетное количество отрицательных связей.

Часто петли обратной связи состоят как из положительных, так и отрицательных причинных связей, и тогда их общий характер легко определяется простым подсчетом количества отрицательных звеньев в петле.

Выбранные Норбертом Винером примеры управления лодкой и велосипедом идеально подходят для иллюстрации понятия обратной связи, поскольку они относятся к хорошо освоенному человеком опыту и их понимают сразу.

Для иллюстрации таких же принципов саморегулирования в механических устройствах Норберт Винер и его коллеги часто использовали один из самых ранних и простейших примеров обратной связи в технике — центробежный регулятор парового двигателя.

Центробежный регулятор парового двигателя состоит из вращающейся оси с двумя грузами («маховиками»), прикрепленными к ней таким образом, что под действием центробежной силы они расходятся, когда скорость вращения увеличивается. Регулятор расположен на вершине цилиндра парового двигателя, а грузы соединены с клапаном, который перекрывает пар, когда эти грузы расходятся в стороны. Давление пара управляет двигателем, двигатель управляет маховым колесом. Маховое колесо, в свою очередь, управляет описанным выше регулятором, и таким образом замыкается причинно-следственный цикл.

Обратная связь и петля обратной связи. Кибернетика и социология.

Значение концепции Норберта Винера для социологии.

Норберт Винер был убежден в том, что обратная связь — важнейший компонент моделирования не только живых организмов, но также и социальных систем. В книге «Кибернетика» он писал:

«Не подлежит сомнению, что социальная система является организационной структурой, подобной индивиду, то есть ее объединяет система связи, и она обладает динамикой, в которой круговые процессы типа обратной связи играют важную роль».

Именно открытие обратной связи как общего паттерна жизни, применимого к организмам и социальным системам, вызвало такой взволнованный интерес Грегори Бэйтсона и Маргарет Мид к кибернетике.

За всю историю социальных наук было изобретено множество метафор для описания саморегулирующих процессов в социальной жизни. Из наиболее известных — «невидимая рука», регулирующая рынок в экономической теории Адама Смита, «проверки и противовесы» в Конституции США, а также взаимодействие тезиса и антитезиса в диалектике Гегеля и Маркса.

Все явления, описываемые этими моделями и метафорами, обязательно включают в себя круговые паттерны причинности, которые можно представить в виде петель обратной связи, — и все же ни один из их авторов не выявил этого существенного факта.

Если круговых логических паттернов самобалансирующей обратной связи в жизни общества никто не замечал до появления кибернетики, то паттерн самоусиливающей обратной связи, в просторечии называемый «порочным кругом», был известен сотни лет назад. Эта выразительная метафора описывает неблагоприятную ситуацию самоухудшения в круговой последовательности событий.

Возможно, круговая природа таких самоусиливающих петель обратной связи была осознана гораздо раньше потому, что их последствия гораздо более драматичны, чем в самобалансирующих, отрицательных петлях обратной связи, широко распространенных в живом мире.

Существуют и другие известные метафоры для описания эффекта самоусиливающей обратной связи на ситуации в социальной сфере. Один из общеизвестных примеров — «накликанная беда», когда изначально безосновательные страхи толкают человека к действиям, в результате которых эти страхи становятся обоснованными и оправданными; другой пример — «эффект агитвагона», когда сомнительное движение получает социальную поддержку лишь за счет растущего числа его сторонников.

Обратная связь и петля обратной связи. Кибернетика и социология.

Несмотря на то, что самоусиливающая обратная связь широко запечатлена в народной мудрости, она практически не играла никакой роли на первых этапах развития кибернетики.

Кибернетики круга Норберта Винера признавали существование этих феноменов, однако не пытались вникнуть глубже в их суть. Вместо этого они сосредоточили свое внимание на саморегулирующихся процессах гомеостаза в живых организмах. Действительно, усиливающая обратная связь в чистом виде редко встречается в природе, поскольку она, как правило, уравновешивается петлями отрицательной обратной связи, ограничивающими тенденции к нарастанию.

В любой экосистеме, например, каждый вид обладает потенциалом экспоненциального увеличения своей численности, однако эта тенденция находится под контролем различных уравновешивающих взаимодействий внутри самой системы. Экспоненциальное нарастание может произойти только в случае серьезных нарушений в экосистеме. Тогда некоторые растения превращаются в «сорняки», некоторые животные — во «вредителей», а некоторые виды просто истребляются — и вот уже под угрозой оказывается равновесие всей системы.

В 1960-е годы антрополог и кибернетик Магоро Маруяма предпринял изучение самоусиливающихся, или «усиливающих отклонение», процессов положительной обратной связи. В своей знаменитой статье «Вторая кибернетика» Марого представил схемы обратной связи, в которых пометил знаками «+» и «-» их причинные узлы, и использовал эти удачные обозначения для подробного анализа взаимодействия процессов отрицательной и положительной обратной связи в биологических и социальных явлениях. Таким образом, он связал кибернетическую концепцию обратной связи с понятием взаимной причинности, которое к тому времени было разработано социальными исследователями, и тем самым значительно способствовал распространению влияния кибернетических принципов на социальную мысль.

С точки зрения истории системного мышления, одним из наиболее важных аспектов широкого изучения кибернетиками петель обратной связи стало осознание того, что они отражают паттерны организации. Круговая причинность в петле обратной связи отнюдь не предполагает, что элементы соответствующей физической системы соединены в кольцо. Петли обратной связи — это абстрактные паттерны взаимоотношений, заложенных в физические структуры или в деятельность живых организмов. Впервые в истории системного мышления кибернетики провели четкую границу между паттерном организации системы и ее физической структурой.

Это различение оказалось исключительно важным для современной теории живых систем!

Норберт Винер — человек, который впервые увидел обратную связь!

Обратная связь. Петля обратной связи и саморегулирование. Концепция Норберта Винера. Кибернетика и социология.

Ссылка на основную публикацию
Элемент в аккумулятор шуруповерта
0 ОТДЕЛ ТОВАРОВ ДЛЯ НОУТБУКОВ ОТДЕЛ ТОВАРОВ ДЛЯ НОУТБУКОВ ОТДЕЛ ТОВАРОВ ДЛЯ НОУТБУКОВ ОТДЕЛ ТОВАРОВ ДЛЯ НОУТБУКОВ ОТДЕЛ ТОВАРОВ ДЛЯ...
Электрические клипсы для проводов
Электротехнические работы, связанные с электрическими сетями, неизбежно сопровождаются исполнением монтажа, техобслуживания, ремонта. В свою очередь перечисленный сервис заставляет использовать зажимы...
Электрические обогреватели для дачи энергосберегающие
*Обзор лучших по мнению редакции expertology.ru. О критериях отбора. Данный материал носит субъективный характер, не является рекламой и не служит...
Элементарные технические знания об электроустановке
1. Элементарные технические знания об электроустановке и ее оборудовании 1.1. Термины Электроустановка - совокупность машин, аппаратов, линий и вспомогательного оборудования...
Adblock detector