Что такое синхронный генератор

Что такое синхронный генератор

Источники автономного электрического питания, называемые электростанциями, генераторами, бывают синхронные и асинхронные, однофазные и трёхфазные — в зависимости от типа собственно электрического генератора, соединенного посредством вала с двигателем внутреннего сгорания.

Рассмотрим генераторы — электрические машины переменного тока, определяющие потребительские характеристики автономных источников.

Генераторы синхронные и асинхронные имеют различное устройство. Принцип работы и характеристики их также отличаются.

Выбирая тип генератора, важно сделать правильный выбор — от этого будет зависеть как качество работы электрических приёмников, подключённых к нему, так и работоспособность самого генератора.

Синхронный генератор состоит из статора, ротора и блока управления.

Статор и ротор выполнены из тонких пластин из электротехнической стали, хорошо проводящих магнитный поток и плохо — электрические вихревые токи.

Витки статорной обмотки размещены в пазах статора равномерно по окружности. Для однофазного генератора — одна фазная обмотка, для трёхфазного генератора — три фазные обмотки, соединённые в звезду или треугольник и сдвинутые по окружности одна относительно другой на 120 градусов.

Ротор представляет собой явнополюсный биполярный электромагнит постоянного тока.

Обмотка ротора соединена через два щёточные узла, представляющие пару «щётка — кольцо», с блоком управления. Последний осуществляет её питание постоянным током и обеспечивает необходимые электрические связи для автоматического регулирования.

Асинхронный генератор состоит из статора и ротора.

Статор имеет такое же устройство, как и у синхронного генератора. Его обмотка также может быть однофазной или трёхфазной.

Ротор короткозамкнутый: токопроводящая часть ротора выполнена из алюминия и напоминает беличью клетку.

При вращении ротора двигателем внутреннего сгорания (ДВС) вращающееся вместе ним магнитное поле электромагнита возбуждает в статорной обмотке переменное синусоидальное — однофазное или трёхфазное — напряжение.

При подключении к статорной обмотке нагрузки в цепи течёт переменный — однофазный или трёхфазный — электрический ток.

Величина напряжения и частота на зажимах статорной обмотки зависимы от скорости вращения ротора. С изменением электрической нагрузки синхронного генератора механическая нагрузка на валу ДВС также имеет тенденцию к изменению в прямо пропорциональной зависимости, могущую привести к изменению скорости вращения ротора и, как следствие, к изменению величины напряжения и частоты.

Во избежание подобных изменений и для поддержания заданных величин напряжения и частоты с необходимой точностью, блоком управления синхронного генератора осуществляется автоматическое регулирование электрических параметров через обратную связь по току и напряжению, подаваемую на роторную обмотку.

При вращении ротора асинхронного генератора под действием остаточного магнетизма статора в беличьей клетке индуцируется электрический ток, магнитное поле которого, вращаясь вместе с ротором, наводит в неподвижной обмотке статора переменное синусоидальное — однофазное или трёхфазное — напряжение.

Поскольку в асинхронном генераторе нет электрической связи с ротором, то и нет возможности искусственного автоматического регулирования электрических параметров напряжения и тока. Они изменяются с изменением электрической нагрузки на обмотке статора в соответствии с конструктивными особенностями асинхронной машины переменного тока.

У синхронного генератора величина напряжения и частота поддерживаются с высокой точностью, в то время как у асинхронного они изменяются в относительно большом диапазоне.

Синхронный генератор, будучи источником реактивной мощности (из-за конструктивных особенностей этого вида электрических машин), не боится перегрузок переходных режимов, связанных с пуском под нагрузкой из потребителей этой реактивной мощности — всех электробытовых приборов и электроинструмента, содержащих электродвигатели.

Асинхронный генератор, сам являясь потребителем реактивной мощности, перегрузок при пуске под нагрузкой с потребителями реактивной мощности боится больше — имеется вероятность протекания больших токов и перегрева статорной обмотки. Для ликвидации этого недостатка профессиональные асинхронные генераторы снабжены пусковыми конденсаторами, которые после стабилизации величины тока статора через несколько секунд после пуска отключаются.

Синхронный генератор, в отличие от асинхронного, меньше боится электрических перегрузок в установившемся режиме, поскольку снабжён системой автоматического регулирования через обратную связь по току и напряжению.

В асинхронном генераторе сила сцепления электромагнитных полей ротора и статора искусственно не регулируется, а имеет значение, описываемое естественной характеристикой.

Несмотря на некоторые слабые стороны, асинхронные генераторы завоевали себе популярность более простой конструкцией, неприхотливостью, отсутствием необходимости квалифицированного технического обслуживания и сравнительной дешевизной.

Читайте также:  Не работает холодильник индезит причины неисправности

Синхронный генератор переменного тока необходимо выбрать в следующих случаях:

1. по условиям эксплуатации подключаемых электрических приёмников предъявляются повышенные требования к стабильности величины напряжения и частоты;

2. вероятны перегрузки в переходном режиме при подключении к работающему генератору электрических приемников, являющихся потребителями реактивной мощности;

3. возможны перегрузки в переходном режиме при пуске генератора под нагрузкой из включённых приёмников, являющихся потребителями реактивной мощности;

4. случаются перегрузки в установившемся режиме, когда к генератору подключены приёмники — потребители как активной, так и реактивной мощности.

Асинхронный генератор переменного тока следует предпочесть, если:

1. к величине напряжения и частоте не ставится высоких требований;

2. работа генератора предполагается в запылённых условиях;

3. отсутствует возможность квалифицированного технического обслуживания;

4. нет возможности приобрести более дорогостоящий синхронный генератор.

5. вероятны перегрузки в переходном режиме, но генератор снабжён дополнительными пусковыми конденсаторами.

Следует отметить, что как синхронный, так и асинхронный генераторы не переносят чрезмерных перегрузок, превышающих их максимальную мощность. В таких случаях срабатывает электрическая защита, предохраняющая агрегат от выхода из строя. Для того, чтобы избежать аварийных ситуаций, нужно знать, как рассчитать мощность генератора, исходя из максимальной величины предполагаемой нагрузки.

Генераторы переменного тока служат для преобразования механической энергии первичных двигателей в электрическую. В качестве первичного двигателя применяются: паровая турбина ( система паровая турбина – генератор называется турбогенератором), водяная турбина (гидрогенератор), двигатель внутреннего сгорания (дизель- генератор), электрический двигатель ( двигатель – генератор).

Синхронной машиной называется машина, скорость вращения магнитного поля которой равно скорости ротора

(9-17)

Машина обратима и может работать как генератор, так и как двигатель. Однако наибольшее распространение они получили как генераторы переменного тока, которые устанавливают на всех современных электростанциях.

Генератор, как и всякая электрическая машина, состоит из неподвижной части – статора и вращающейся части – ротора. Часто ту часть машины, которая создает магнитное поле, называют индуктором, а ту часть машины, где располагается обмотка, в которой индуцируется эдс, называют якорем.

В основе работы синхронных генераторов лежит явление электромагнитной индукции. ЭДС, которая индуцируется в рабочей обмотке

.

Принципиально безразлично, будет ли движущийся проводник пересекать неподвижное магнитное поле или, наоборот, подвижное магнитное поле будет пересекать неподвижный проводник, поэтому конструктивно синхронные генераторы могут быть двух видов. В первом из них якорь неподвижен, а индуктор вращается (рис.111 а), во втором – наоборот (рис.111б).

Маломощные и низковольтные генераторы (однофазные и трехфазные) часто используются в передвижных станциях и могут работать по схеме рис. б. В этих генераторах рабочая обмотка часто выполняется на роторе, а на внутренней поверхности статора устраивается полюсная система с явно выраженными полюсами. Подключение генератора к внешней нагрузке осуществляется через скользящие токосъемы( щетки с кольцами на оси ротора).

Современные генераторы, как составная часть силовой электроэнергетики, стр ояться на высокое напряжение 15-40кВ. Снимать такие высокие напряжения с вращающейся рабочей обмотки при помощи щеточно – коллекторного узла затруднительно. Кроме того, обмотку высокого напряжения, которая при вращении ротора испытывает толчки и вибрации, очень трудно изолировать. Этим объясняется, что в современных генераторах обмотку якоря располагают на неподвижной части машины – статоре, а обмотку возбуждения (магнитные полюсы) располагают на роторе.

Схема двухполюсного синхронного генератора этого типа дана на рис. а. На статор машины намотаны три обмотки с одинаковым количеством витков, сдвинутые на угол 120 0 . Буквами Н и К отмечены начала и концы каждой обмотки. Магнитное поле создается обмоткой, намотанной на роторе. Через щетки и кольца к концам этой обмотки подается постоянное напряжение от специального источника питания. Ротор при помощи первичного двигателя приводится во вращение; его магнитное поле пересекает обмотки статора и в них индуктируются синусоидальные эдс.

Статор. Статор ничем не отличается от статора асинхронной машины. В его обмотке действием вращающегося магнитного поля ротора наводится эдс, подаваемая во внешнюю цепь генератора. Такая конструкция генератора позволяет устранить скользящие контакты в цепи нагрузки генератора (обмотка статора соединяется с нагрузкой непосредственно) и надежно изолировать рабочую обмотку от корпуса машины, что весьма существенно для современных генераторов, изготавливаемых на большие мощности при высоких напряжениях. Основной магнитный поток синхронного генератора, создаваемый вращающимся ротором, возбуждается от постороннего источника питания. Постоянный ток от источника проходит через обмотку ротора через два кольца и две неподвижных щетки, установленные на валу генератора. Мощность такого источника питания равна 0,25 – 1% от номинальной мощности синхронного генератора. Номинальное напряжение 115-350В.

Читайте также:  Как можно сделать панно

Ротор. По свой конструкции роторы генераторов делятся наявнополюсные (тихоходные) (рис. 112а) инеявнополюсные(высокоскоростные) (рис.112 б). Число пар полюсов ротора обусловлено

скоростью его вращения. При частоте генерируемой эдс 50Гц неявнополюсной ротор быстроходной машины – турбогенератора, вращающийся со скоростью 3000об/мин, имеет одну пару полюсов, тогда как явнополюсной ротор тихоходного гидрогенератора, вращающийся со скоростью от 50 до 750об/мин, имеет число пар полюсов соответственно от 60 до 4.

Работа генератора под нагрузкой. Реакция якоря. Если к зажимам работающего генератора подключить внешнюю нагрузку, то в обмотках статора возникает электрический ток, который создает свое магнитное поле – поток статора. Это магнитное поле накладывается на основное магнитное поле ротора, создаваемое обмоткой возбуждения, ослабляет или усиливает его. Это воздействие поля статора на основное магнитное поле называетсяреакцией якоря.

Рассмотрим реакцию якоря при различных по характеру нагрузках.

В случае активной нагрузки, при которой ток совпадает по фазе с эдс, максимум тока наступит в тот момент, когда оси полюсов ротора будут находиться напротив обмоток якоря (рис.113 а). Это так называемая поперечная реакция якоря: потоки статора и роторавзаимно перпендикулярны. В результате векторного сложения этих потоков результирующий магнитный поток генератора несколько увеличивается и смещается в пространстве, — следовательно, эдс генератора возрастает.

В случае чисто индуктивной нагрузки ток отстает от эдс по фазе на К моменту максимального значения тока в обмотке А-Х ротор должен быть повернуть на 90 0 по часовой стрелке (рис.113 б). Магнитные потокиинаправлены встречно и результирующий магнитный поток генератора равен их разности. Такая реакция якоря уменьшает эдс генератора.

В случае чисто емкостной нагрузки ток нагрузки генератора опережает по фазе эдс на , — следовательно, ротор генератора еще не дошел 90 0 до вертикального положения, а ток в обмотке А-Х уже имеет максимальное значение (рис.113 в). Потокииимеют одинаковое направление, увеличивают результирующий магнитный поток, а это приводит к увеличению эдс генератора.

Очевидно, что реакция якоря будет тем значительней, чем больше ток нагрузки. Таким образом, реакция якоря в синхронном генераторе приводит к изменениям магнитного потока и эдс, что является крайне нежелательным, так как изменение значения и характера нагрузки приводит к изменению напряжения на зажимах генератора.

На практике при всяком изменении нагрузки с помощью автоматики изменяют ток возбуждения; этим ослабляют влияние реакции якоря.

Для снятия различных характеристик синхронного генератора можно использовать схему рис.114 а.

Характеристика холостого хода. Эта характеристика представляет зависимость индуктированной в статоре эдс Е от тока возбуждения при разомкнутой внешней цепи машины

Генератор приводится во вращение с синхронной скоростью, соответствующей номинальной частоте генератора. Изменяют при помощи реостата ток возбуждения, отмечая показания амперметра в цепи возбуждения. По показаниям вольтметра, включенного на зажимы обмотки статора, определяют величину индуктированной эдс Е. Характеристика холостого хода показана на рис. 114б. Прямолинейная часть характеристики указывает на пропорциональность между магнитным потоком (током возбуждения) и индуктированной эдс. В дальнейшем магнитная система генератора насыщается, кривая изгибается, т.е. при значительном увеличении тока возбуждения индуктированная эдс растет очень медленно.

Внешняя характеристика. Зависимость напряжения на зажимах генератораUот тока нагрузкиIпри постоянных значениях тока возбужденияiB, коэффициента мощностиcosφи скоростиnвращения дается внешней характеристикой (рис. в)

На рис.114 в даны внешние характеристики генератора для различных видов нагрузки.

Читайте также:  Что приготовить из малого количества фарша

Изменение напряжения с нагрузкой происходит вследствие реакции якоря и падения напряжения в обмотке статора.

При индуктивной нагрузке реактивный ток размагничивает машину и напряжение при увеличении тока нагрузки уменьшается.

При емкостной нагрузке напряжение генератора с увеличением тока нагрузки повышается вследствие действия продольно – намагничивающей реакции якоря.

Номинальный режим нагрузки выбирается таким, чтобы при cosφ= 0,8 изменения напряжения не превышали 35 — 45% от номинального (кривая 1).

В синхронных машинах магнитное поле токов якорной обмотки и ротор вращаются с одинаковой скоростью (синхронно). Синхронные машины обратимы, т. е. они могут работать как генераторы и как двигатели. Однако наибольшее распространение они получили как генераторы переменного тока, которые устанавливают на всех современных электростанциях.

Генератор переменного тока был изобретен выдающимся русским электротехником П. Н. Яблочковым. Этот генератор был применен для питания электрических свечей и по принципу работы ничем не отличался от современных генераторов, являясь первым многофазным генератором. На его статоре были уложены изолированные друг от друга несколько обмоток, каждая из которых имела свою цепь с группой свечей.

В 1888 г. другой выдающийся русский электротехник М. О. Доливо-Добровольский построил первый в мире трехфазный генератор мощностью около 3 кВА.

Синхронный генератор имеет две основные часик ротор и статор.

Ротор (подвижная, вращающаяся часть машины) образует систему вращающихся электромагнитов, питаемых постоянным током от внешнего источника.

Статор (неподвижная часть машины) ничем не отличается от статора асинхронной машины. В его обмотке действием вращающегося магнитного поля ротора наводится ЭДС, подаваемая на внешнюю цепь генератора (в режиме двигателя на обмотку статора подается напряжение сети). Такая конструкция генератора позволяет устранить скользящие контакты в цепи нагрузки генератора (обмотка статора соединяется с нагрузкой непосредственно) и надежно изолировать рабочую обмотку от корпуса машины, что весьма существенно для современных генераторов, изготовляемых на большие мощности при высоких напряжениях. Основной магнитный поток синхронного генератора, создаваемый вращающимся ротором, возбуждается от постороннего источника-возбудителя, представляющего собой обычный генератор постоянного тока (мощностью 0,5-10% от мощности генератора). Возбудитель устанавливается на общем валу с генератором либо соединяется с валом генератора муфтой или ременной передачей. Постоянный ток от возбудителя проходит через обмотку ротора через два кольца и неподвижные щетки, установленные на валу ротора.

По своей конструкции роторы различают явнополюсные (рис. 5-25, а) и неявнополюсные (рис. 5-25, б). Число пар полюсов ротора обусловлено скоростью его вращения. При частоте генерируемой ЭДС 50 Гц неявнополюсный ротор быстроходной машины—турбогенератора, вращающийся со скоростью

3000 об/мин, имеет одну пару полюсов, тогда как явнополюсный ротор тихоходного гидрогенератора (скорость вращения которого определяется высотой напора воды), вращающийся со скоростью от 50 до 750 об/мин, имеет число пар полюсов соответственно от 60 до 4.

Маломощные синхронные генераторы (до 100 кВА), как правило, имеют самовозбуждение: обмотка возбуждения питается выпрямленным током того же генератора (рис. 5-26). Цепь возбуждения образуют трансформаторы тока , включаемые в цепь нагрузки генератора, полупроводниковый выпрямитель ПВ, собираемый, например, по схеме трехфазного моста, и обмотка возбуждения генератора ОВ с регулировочным реостатом R.

Самовозбуждение генератора происходит следующим образом. В момент пуска генератора благодаря остаточной индукции в магнитной системе появляются слабые ЭДС и токи в рабочей обмотке генератора. Это приводит к появлению ЭДС во вторичных обмотках трансформаторов ТТ и небольшого тока в цепи возбуждения, усиливающего индукцию магнитного поля машины. ЭДС генератора возрастает до тех пор, пока магнитная система машины полностью не возбудится.

Такие генераторы (однофазные и трехфазные) используют в маломощных низковольтных передвижных электростанциях, применяемых, например, в сельском хозяйстве для электрострижки овец и дойки коров, а также для питания сельских передвижных киноустановок и т. д. В этих генераторах рабочая обмотка часто выполняется на роторе, а на внутренней поверхности статора устраивается полюсная система с явно выраженными полюсами. Подключение генератора к внешней нагрузке осуществляется через скользящие токосъемы (щетки с кольцами на оси ротора).

Ссылка на основную публикацию
Что такое пленочный теплый пол
Одним из самых эффективных источников обогрева помещений считается пленочный теплый пол. В нашей статье ознакомимся с особенностями и принципом работы...
Что относится к пищевой продукции
В книжной версии Том 26. Москва, 2014, стр. 310 Скопировать библиографическую ссылку: ПИЩЕВЫ́Е ПРОДУ́КТЫ, про­дук­ты жи­вот­но­го, рас­ти­тель­но­го, ми­не­раль­но­го про­ис­хо­ж­де­ния, пред­на­зна­чен­ные...
Что относится к санитарно техническому оборудованию
Санитарно-техническое оборудование (сантехника) — это уст­ройства (приборы), устанавливаемые в уборных (туалетах), ванных комнатах, комнатах личной гигиены (на производстве и учреждени­ях),...
Что такое плита перекрытия в строительстве
Одним из конструктивных элементов дома является перекрытие. Оно делит внутреннее пространство на функциональные зоны, расположенные на разных уровнях, воспринимает нагрузки...
Adblock detector