Что такое отрицание в информатике

Что такое отрицание в информатике

  • 10 — 11 классы
  • Информатика
  • 10 баллов

Что это такое и как обозначается конъюнкция дизъюнкция инверсия эквивалентность импликация

  • Попроси больше объяснений
  • Следить
  • Отметить нарушение

VOLENDE 21.02.2013

Ответ

Проверено экспертом

Конъюнкция — это сложное логическое выражение, которое считается истинным в том и только том случае, когда оба простых выражения являются истинными, во всех остальных случаях данное сложеное выражение ложно.
Обозначение: F = A & BДизъюнкция — это сложное логическое выражение, которое истинно, если хотя бы одно из простых логических выражений истинно и ложно тогда и только тогда, когда оба простых логических выраженныя ложны.
Обозначение: F = A + B.

Инверсия — это сложное логическое выражение, если исходное логическое выражение истинно, то результат отрицания будет ложным, и наоборот, если исходное логическое выражение ложно, то результат отрицания будет истинным. Другими простыми слова, данная операция означает, что к исходному логическому выражению добавляется частица НЕ или слова НЕВЕРНО, ЧТО.

Импликация — это сложное логическое выражение, которое истинно во всех случаях, кроме как из истины следует ложь. Тоесть данная логическая операция связывает два простых логических выражения, из которых первое является условием (А), а второе (В) является следствием.

Эквивалентность — это сложное логическое выражение, которое является истинным тогда и только тогда, когда оба простых логических выражения имеют одинаковую истинность..

  • 10 — 11 классы
  • Информатика
  • 10 баллов

Что это такое и как обозначается конъюнкция дизъюнкция инверсия эквивалентность импликация

  • Попроси больше объяснений
  • Следить
  • Отметить нарушение

VOLENDE 21.02.2013

Ответ

Проверено экспертом

Конъюнкция — это сложное логическое выражение, которое считается истинным в том и только том случае, когда оба простых выражения являются истинными, во всех остальных случаях данное сложеное выражение ложно.
Обозначение: F = A & BДизъюнкция — это сложное логическое выражение, которое истинно, если хотя бы одно из простых логических выражений истинно и ложно тогда и только тогда, когда оба простых логических выраженныя ложны.
Обозначение: F = A + B.

Инверсия — это сложное логическое выражение, если исходное логическое выражение истинно, то результат отрицания будет ложным, и наоборот, если исходное логическое выражение ложно, то результат отрицания будет истинным. Другими простыми слова, данная операция означает, что к исходному логическому выражению добавляется частица НЕ или слова НЕВЕРНО, ЧТО.

Читайте также:  Какая мощность радиатора на квадратный метр

Импликация — это сложное логическое выражение, которое истинно во всех случаях, кроме как из истины следует ложь. Тоесть данная логическая операция связывает два простых логических выражения, из которых первое является условием (А), а второе (В) является следствием.

Эквивалентность — это сложное логическое выражение, которое является истинным тогда и только тогда, когда оба простых логических выражения имеют одинаковую истинность..

Методы вычисления

Логика выражений необходима для строения составных высказываний. Они состоят из простых выражений за счет соединения их друг с другом при помощи операций логики «не», «и», «или». Для определения ложности либо истинности рассматриваются составные символы.

При передачи данных через онлайн-сервисы и с помощью ЭВМ операторы используют специализированные термины. Под высказываниями подразумеваются повествовательные предложения, которые могут быть истинными (1) либо ложными (0). Операция — мыслительное действие, в результате которого изменяется объём либо содержание, образуется новое понятие.

Элементы выражения, утверждения либо записи:

С учётом значений переменных выражение может иметь одно из следующих значений: истина либо ложь. Составные выражения строятся из простых при помощи логических действий, которые соответствуют связкам, употребляемым в естественном языке. Пример: значение инверсии — «неверно, что», а конъюнкции — «и», «но», «хотя». Существует определённый порядок выполнения логических операций в информатике:

  1. отрицание (инверсия);
  2. умножение (конъюнкция);
  3. сложное и простое сложение (дизъюнкция);
  4. следствие (импликация);
  5. тождество (эквивалентность).

Для изменения последовательности, указанной в схеме, применяются скобки. К сложным функциям относится конъюнкция.

Согласно формуле, истинно в том и только в том случае, если 2 простых высказывания являются истинными. Подобное значение возможно в одном случае, а во всех других оно ложное. Обозначение конъюнкции: &, ∧.

Описание операций:

  • = «основателем высшей математики является Буль»;
  • = «графические исследования Шеннона используются в алгебре».

Выражение считается истинным, когда одновременно истинны два высказывания. Базовые значения исходных данных указываются в специальной таблице истинности логических операций. Двоичные числа, которые соответствуют высказываниям, располагаются в схеме в возрастающем порядке. В последнем столбике записывается результат выполненных операций для конкретных операндов (аргумент). Свойства логического умножения:

  • если один элемент ложный, тогда вся конъюнкция ложная для конкретного набора значений;
  • если выражения истинны, тогда всё уравнение будет истинной;
  • результат всей конъюнкции сложного высказывания не зависит от порядка следования элементов.
Читайте также:  Какой цветок в горшке подарить бабушке

Логическое сложение

В информатике часто используется такой вид операции, как дизъюнкция. Случай, когда нужно исключать истинное сложение — все подвыражения ложны. Символы, которые используются для обозначения операции: +, ∨. Базис свойств сложного сложения:

  • любое подвыражение истинно, значит, вся дизъюнкция будет истинной;
  • если все определения из списка ложны, тогда вся дизъюнкция ложна.

Результат не зависит от порядка расположения знаков логической операции. Для решения дизъюнкции используются 2 выражения. Первое: = «Лейбниц применил в информатике математические символы», второе: = «Лейбниц основал бинарную арифметику».

В результате преобразования описанных выражений получается следующий результат: «Идея использования в информатике математических символов принадлежит Лейбницу, или он основал бинарную арифметику».

Сложное высказывание считается ложным, если одновременно неверны два первоначальных понятия. В основе записи дизъюнкции находятся нули и единицы.

Использование частиц

Инверсия — ещё одна операция, которую применяют ежедневно операторы ЭВМ для обработки и передачи данных. Принцип преобразования отрицания: каждому тезису ставится новое высказывание, противоположное первоначальному. Инверсия либо отрицание означает, что к исходному выражению приставляется частица «не» либо слово «неверно», «что». Расшифровка логической операции:

  • если первоначальное выражение является истиной, тогда его отрицание будет ложным;
  • если исходное высказывание ложное, тогда его отрицание будет истинным.

Чтобы править запись инверсии, применяются специальные знаки логической операции: «НЕ», «А», «¬А». Для логического отрицания характерны некоторые свойства. Считается, что «двойное отрицание» (обозначается «¬ ¬A») — следствие суждения А. Оно указывает на тавтологию логического формата и равняется значению в булевой логистике.

Высказывание «Я имею компьютер» имеет отрицание «Неверно, что я имею компьютер» либо «У меня нет компьютера». Выражение «Я не знаю японский язык» имеет отрицание «Неверно, что я не знаю японский язык» либо «Я знаю японский язык». Другой пример инверсии: «Все ученицы 8 класса — отличницы». Отрицание можно составить следующим образом:

  • «неверно, что все ученицы 8 класса — отличницы»;
  • «не все ученицы 8 класса — отличницы».

Когда строится отрицание к простому высказыванию, либо применяется оборот из русского языка «неверно, что…», либо отрицание формируется для сказуемого, тогда к глаголу рекомендуется добавить частицу «не». Логическое умножение с символом «и» должно выполняться раньше сложения с «или».

Сложную операцию можно записать в виде выражения, в состав которого входят переменные, знаки и скобки. При этом необходимо соблюдать некоторую последовательность действий:

Читайте также:  Как очистить силиконовый клей

Для изменения порядка выполнения действия расставляются скобки. В конце выполненных операций проводится импликация. Это сложное выражение считается истинным в любом случае, исключение — из истины следует ложь. Операция позволяет связать 2 простых высказывания, из которых первое считается условием, а второе — следствием.

Для вычисления результата составного высказывания достаточно выяснить только значение 1 составного элемента. Если в схеме с «и» используется ложное простое высказывание, то результат составного будет ложным. Когда в составном предложении с «или» значения одного простого символа истинное, тогда результат всего выражения будет истинным.

Закон Пирса

В информатике используется булевая функция, названная в честь Пирса. Впервые стрелку Пирса ввели ученые в алгебру в 1880 г. г. Она обозначается следующим образом: ↓, «или-не». Свойства функции:

  • формирование базиса для булевых функций 2-х неизвестных;
  • построение других операций (отрицание: X↓X=¬X).

В информатике выражение представлено в виде элемента, который называется «операция 2ИЛИ-НЕ». Другая функция, которая часто применяется в электронике, называется штрихом Шеффера. Операция состоит из 2-х неизвестных либо бинарного элемента. Штрих используется с 1913 года. Он обозначается как |, что эквивалентно «и-не».

Его главные свойства:

  • основа функции, состоящей из 2-х переменных;
  • возможность построения иных высказываний (X ∣ X=¬X — отрицание).

В информатике операция используется с целью реализации схем путём применения типового, но дорогостоящего элемента. Из всех существующих логических операций приоритет отдаётся инверсии. Чтобы выразить логические сущности, операторы применяют разные символы. Специалисты решают задачи в уме, передавая через сервисы только конечный результат. Для обработки данных они используют схемы всех высказываний. Вычисления производятся быстрее на ЭВМ, компьютерах с мощным жёстким диском.

Ссылка на основную публикацию
Что относится к пищевой продукции
В книжной версии Том 26. Москва, 2014, стр. 310 Скопировать библиографическую ссылку: ПИЩЕВЫ́Е ПРОДУ́КТЫ, про­дук­ты жи­вот­но­го, рас­ти­тель­но­го, ми­не­раль­но­го про­ис­хо­ж­де­ния, пред­на­зна­чен­ные...
Через какое расстояние крепить полипропиленовые трубы
При проектировании трубопроводы разделяются на отдельные участки, путем распределения точек жёсткого крепления. Расстояние между креплениями полипропиленовых труб таким образом, предотвращается...
Через сколько времени можно шпаклевать после грунтовки
Процесс нанесения шпаклевки на грунтовку является очень важным. Большое количество людей во время ремонта задумываются о том, что возможно ли...
Что относится к санитарно техническому оборудованию
Санитарно-техническое оборудование (сантехника) — это уст­ройства (приборы), устанавливаемые в уборных (туалетах), ванных комнатах, комнатах личной гигиены (на производстве и учреждени­ях),...
Adblock detector